|
||||||||||||||||
Аналогичным образом рассчитывают влияние факторов и по другим моделям смешанного типа. Основан на относительных показателях динамики, выражающих отношение фактического уровня анализируемого показателя в отчетном периоде к его уровню в плановом (базисном) периоде. Используется для определения влияния факторов на результативный показатель только в мультипликативных моделях. Исходная модель . Общий индекс результативного показателя: . Относительное изменение результативного показателя за счет факторов a, b, c: ; ; . Абсолютное изменение результативного показателя за счет факторов a, b, c: ; ; . Применяется в мультипликативных моделях и смешанных моделях типа . При его использовании величина влияния факторов на изменение результативного показателя рассчитывается умножением абсолютного прироста исследуемого фактора на плановую (базовую) величину факторов, которые находятся в модели справа от него, и на фактическую величину факторов, расположенных слева от него. Рассмотрим алгоритмы расчета: для мультипликативной факторной модели типа: ; ; ; ; ; для смешанной модели типа . ; ; ; . 4. Способ относительных разниц Применяется в мультипликативных моделях. Есть несколько вариантов расчета влияния факторов на изменение результативного показателя. Первый способ: используются относительные отклонения факторных показателей, выраженные в процентах. Исходная модель: ; ; ; Тогда ; ; ; . Второй и третий способы: используются коэффициенты и индексы изменения факторных показателей. ; ; . Тогда ; ; ; . Для третьего способа можно использовать еще и такой метод расчета влияния факторов на результативный показатель ; ; . Способ четыре: прием процентных разностей. Исходная модель | ||||||||||||||||
где ; ; ; - процент выполнения плана соответственно по факторам “a”, “”, “” и по результативному показателю.
5. Способ пропорционального деления или долевого участия
Сущность способа пропорционального деления состоит в пропорциональном делении прироста результативного показателя по факторам его обусловившим, а долевого участия — в определении доли участия каждого фактора в общем приросте результативного показателя.
Эти способы применяются для аддитивных, мультипликативных, кратных и смешанных моделей типа .
Для определения влияния отдельных факторов на прирост результативного показателя рассчитывается один из следующих коэффициентов:
1) коэффициент пропорционального деления , как отношение общего относительного прироста результативного показателя к сумме относительных изменений факторных показателей.
При аддитивных типах моделей рассчитывается один коэффициент пропорциональности, а при других типах моделей — он определяется для каждого порядка факторов в отдельности.
При исходной модели ,
(изменения всех составляющих взяты в относительных единицах).
;
; ;
.
2) коэффициент долевого участия , который определяется как отношение относительного прироста i‑го факторного показателя к сумме относительных изменений факторных показателей.
Например, для исходной факторной модели , коэффициент долевого участия для фактора «а»:
.
Тогда для приведенной исходной мультипликативной модели:
;
;
;
.
Переход от относительных единиц к абсолютным осуществляется по формулам:
; .
Если взаимосвязь факторов двух уровневая (n-уровневая), то необходимо рассчитывать коэффициент пропорционального деления для каждого уровня, а коэффициент долевого участия для каждого факторного показателя соответствующего уровня.
Для приемов элиминирования характерны следующие недостатки:
величина влияния фактора на изменение результативного показателя зависит от места расположения фактора в детерминированной модели;
дополнительный прирост результативного показателя, полученный от совместного взаимодействия факторов, присоединяется к последнему фактору.
Интегральный метод не имеет этих недостатков. Величина влияния фактора на изменение результативного показателя не зависит от места расположения фактора в детерминированной модели. Дополнительный прирост от совместного взаимодействия факторов, распределяется между ними поровну.
Метод применяется для измерения влияния факторов в мультипликативных, кратных и смешанных моделях типа .
Для мультипликативных моделей:
Исходная модель .
; .
Исходная модель
; ;
.
Исходная модель
Кратная модель ; ; .
Смешанная модель типа: ; ;
;
;
;
;
;
.
Применяется для измерения влияния факторов в мультипликативных моделях.
Результат расчета влияния факторов на результативный показатель при этом способе не зависит от места расположения факторов в модели. Дополнительный прирост от совместного взаимодействия факторов распределяется между ними пропорционально доли изолированного влияния каждого фактора на уровень результативного показателя.
Исходная модель
; ; .
ЛИТЕРАТУРА
1. Экономика предприятия (фирмы): Учебник / Под. ред. проф. О.И.Волкова. – М.: ИНФРА-М, 2005. – 601 с.
2. Грузинов В.П., Грибов В.Д. Экономика предприятия: Учеб. пособие – М.: Финансы и статистика, 2005. – 208 с.
3. Сергеев И.В. Экономика предприятия. Учеб. пособие. – М.: Финансы и статистика, 2005. – 304 с.
4. Экономика предприятия / Под ред. Е.Л.Кантора. – СПб.: Питер, 2006. – 352 с.