Рефераты

Статистический анализ банковской деятельности. Исследование моделей оценки кредитных рисков

Статистический анализ банковской деятельности. Исследование моделей оценки кредитных рисков

 

 

 

 

 

 

 

 

 

 

Статистический анализ банковской деятельности.

Исследование моделей оценки кредитных рисков

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Санкт-Петербург

2007


Содержание


Введение. 3

Подходы к оценке кредитного риска. 6

Недостатки методик Базеля II 8

Глава 1. Обзор моделей оценки кредитного риска. 10

1.1.Понятие качества и прозрачности методик. 10

1.2.Характеристики физического лица. Структура данных. 13

Глава 2. Статистические и эконометрические методы оценки риска. 15

2.1. Скоринговые методики. 15

2.2. Кластерный анализ. 17

2.3. Дискриминантный анализ. 21

2.4. Дерево классификаций. 25

2.5. Нейронные сети. 26

2.6. Технологии Data mining. 27

2.7. Линейная вероятностная регрессионная модель. 28

2.8. Логистическая регрессия. 33

Заключение. 37

Литература. 41


Введение


Динамичное развитие финансового рынка, появление новых инструментов и институтов способствуют возникновению явных и скрытых угроз стабильности. Предупреждение кризисов непосредственно связано с выявлением рисков и управлением ими. Примером по внедрению в международную практику методов оценки рисков является Базельское соглашение о норме собственного капитала, в котором достаточность капитала определяется при помощи коэффициентов, учитывающих кредитный, рыночный и операционный риски. За последнее десятилетие Базельский комитет банковского надзора опубликовал семь нормативов по управлению процентными, кредитными, операционными и связанными с производными финансовыми инструментами и электронным банкингом рисками. Сегодня существует множество различных методов их определения и управления.

В 1988 г. было заключено Базельское соглашение о норме собственного капитала банков (Базель-1), которое с учетом накопленного опыта было улучшено. Новый вариант соглашения (Базель-2) опубликован в июне 2004 г. В него входят почти методы предупреждения кризисов, которые составляют три основания (части) соглашения. Как отмечено выше, установлены требования к достаточности капитала банков с учетом возможного покрытия рисков, методики оценки рисков и управления ими. Таким образом, установлены стандарты и нормы банковской практики, позволяющие учитывать риски, избегать их и предотвращать.

Данное соглашение направлено на усиление надзора за достаточностью капитала, предполагающего эффективный контроль за адекватностью оценки принимаемых рисков и функционированием внутренних методик банка. Базель-2 делает акцент на необходимости укрепления рыночной дисциплины, требуя раскрытия банком полной информации о составе капитала и принятых рисках. Предлагаемый Базельским соглашением–2 механизм предупреждения банковских кризисов наиболее логичен и целостен. В различных документах по банковскому надзору рекомендуется использование стресс-тестирования и раннего предупреждения.

Невозможно гарантировать полное предупреждение всех кризисов, так как это форма проявления противоречий процесса развития и следствие множества факторов, часто находящихся вне финансовых рынков. Поэтому механизмы предупреждения кризисов должны служить не только для информирования, надзора и применения надлежащей практики по укреплению стабильности и предупреждению кризисов, но и рассмотрению различных вариантов развития кризисных ситуаций. Делается это для оценки возможного ущерба и определения путей его уменьшения или предотвращения. Именно такие методы, основанные на стресс-тестировании и сценарном планировании, используются МВФ в рамках Программы оценки финансовой стабильности стран-членов и рекомендуются Базельским комитетом банковского надзора национальным надзорным органам для оценки устойчивости банков и банковской системы в целом.

Актуальна задача построения стабильной и эффективной банковской системы, которую можно решить путем повышения уровня капитализации и внутреннего контроля банков.

По мере роста объемов кредитования растут риски, принимаемые на себя банковской системой. Для повышения эффективности банковского надзора и деятельности самих банков назрела необходимость в более точной оценке этих рисков. В международной практике для оценки достаточности капитала банковской системы используются нормативы, разрабатываемые Базельским комитетом по банковскому надзору, получившие название соглашений по капиталу. Эти соглашения, с одной стороны, дают ориентиры национальным надзорным органам по контролю за банковской системой страны, а с другой - представляют собой международные «правила игры», отказ от которых снижает доверие к банкам.

Группа центральных банков 10 стран, являющихся членами Базельского комитета по банковскому надзору, после пяти лет обсуждений официально одобрила новое Базельское соглашение (Базель II). Но­вые правила, вступающие в силу в конце 2006 года, предусматривают более справедливую оценку банковских рисков и пересмотр стандар­тов достаточности банковского капитала и резервов для надежных и крупных банков. Новое Соглашение призвано содействовать развитию системы регулирования капитала банков и повышению чувствительно­сти минимально допустимого размера капитала к оценке рисков. Гло­бальное регулирование капитала банков необходимо для надежной и здоровой международной банковской системы стран-участниц, приме­няющих данные соглашения.

Соглашение будет внедряться в странах-членах Банка международ­ных расчетов, начиная с конца 2006 года и ориентировочно до 2008-2009 годов. Оно состоит из трех компонентов:

1.                  Требования к минимальному размеру капитала с учетом реаль­ного риска экономических потерь каждого банка.

2.                  Надзор за достаточностью капитала. Необходимость осуществ­ления эффективного надзорного процесса за внутренними системами оценки рисков, принимаемых банками. Этот процесс направлен на под­тверждение того факта, что руководством банка выносятся адекватные суждения об уровне рисков и, соответственно, величина капитала, со­здаваемого банками для их покрытия, достаточна.

3.                  Публичное раскрытие информации - перечень информации, под­лежащей публичному раскрытию, что позволяет более точно оценить адекватность капитализации банка.

Соглашение «Базель II» направлено на увязывание требований к капи­талу с кредитоспособностью заемщиков. Оно предлагает три подхода к оценке кредитного риска.


Подходы к оценке кредитного риска


Стандартный подход разработан для банков, осуществляющих ме­нее сложные формы ссудных операций и кредитного андерайтинга, а также имеющих более простые структуры внутреннего контроля. Та­кие банки могут использовать внешние источники оценки кредитного риска для определения кредитного качества заемщиков в целях под­держания капитала на уровне, требуемом надзорными органами. На­пример, использовать рейтинги, присвоенные такими агентствами, как Moody's Investors Services u Standard & Poor's.

Базовый подход на основе внутренних рейтингов. Банки сами производят расчет вероятности дефолта для своих заемщиков, а затем используют цифры, предоставляемые органами банковского надзора по убыткам в случае дефолта, риску потенциальных убытков в случае дефолта и сроку погашения для расчета требований по капиталу.

Усовершенствованный подход на основе внутренних рейтингов. Банки используют свои собственные оценки по всем четырем перемен­ным. Банкам необходимо собрать данные за несколько прошедших лет о состоянии своих заемщиков и показать надзорным органам надеж­ность и стабильность своих рейтинговых оценок. Это требует круп­ных инвестиций по времени и финансам. Только относительно небольшое число крупных банков будет использовать усовершенствованный подход на основе внутреннего рей­тинга.

Базель II нацеливает банки на совершенствование и использование более сложных и точных систем оценки рисков, а также на осуществление более эффективных процес­сов контроля за принимаемыми рисками. Эти побудительные мотивы реализуются в форме пониженных требований к капиталу.

В целом новый механизм оценки рисков призван уменьшить сроки организации процесса кредитования, привести к снижению издержек и значительному удешевлению кредитов и инвестиций, более эффек­тивно использовать ценные бумаги для привлечения ликвидности с внешних рынков капитала. В то же время он не лишен недостатков.


Недостатки методик Базеля II


1. Стремясь одновременно решить две задачи - стимулировать банки к собственной оценке рисков и не дать им возможность существенно манипулировать этой оценкой, Базельский комитет ввел, по оценкам международных экспертов, чересчур сложные формулы оценки риска. Чтобы минимизировать отвлече­ние средств на возможные потери по ссудам, банки будут стараться занизить оценки риска. В такой ситуации явное преимущество получа­ют крупные банки, которые смогут получить доступ к использованию продвинутого подхода, оставляющего больше пространства для мани­пулирования. Соответственно мелкие и средние банки оказываются в менее выигрышном положении.

2. Стандартный подход использует рейтинги агентств, которые на практике рейтинговые агентства, учитывая недостаточность информации, предпочитают основываться в своих рас­четах на прошлых данных. А это означает, что рейтинговые оценки не будут обладать в полной мере теми функциями, которые от них требу­ют базельские стандарты. Основываясь на этих оценках, банки будут предоставлять избыточный объем кредитов в стадии роста экономики, не задумываясь об их возвращении в будущем, и урезать предоставле­ние кредитов в стадии спада, тем самым затрудняя выход из него.

Выходом из ситуации, по мнению органов банковского надзора, мо­жет стать использование внутренних банковских методик расчета рис­ков. Они в меньшей степени подвержены колебаниям, чем рейтинги, присваиваемые агентствами. Статистические модели для прогноза рисков дают противоречивые и необъективные прогнозы, недооценивая риск совместного падения различных активов. Выбрана не лучшая мера риска, в то время как лучшие модели риска существуют. Надежда на рейтинговые агентства при стандартном подходе к оцен­ке кредитного риска ошибочна, поскольку агентства демонстрируют противоречивые оценки кредитоспособности одного и того же клиен­та. Они неконтролируемы, и качество оценок риска ненаблюдаемо.

Актуальна задача разработки качественно новых методик оценки рисков. Этому и посвящена работа.

Цели работы:

1.                  ознакомиться и описать существующие статистические и эконометрические методики оценки банковских рисков;

2.                  показать недостатки методик, выявить лучшие модели.

Методика исследования. В работе применяются методы статистики, эконометрики. В исследованиях применялись следующий программный продукт SPSS 14.

Теоретическая и практическая значимость. Работа носит практический характер. Результаты, полученные в работе, могут быть использованы в дальнейших исследованиях по управлению риском и могут быть применены в банках.


Глава 1. Обзор моделей оценки кредитного риска


1.1.          Понятие качества и прозрачности методик


Проблема количественной оценки и анализа кредитных рисков и рейтингов заемщиков и создания резервов на случай дефолта является актуальной как для западных, так и российских банков, занимающихся кредитованием физических и юридических лиц. В общем случае кредитный риск при предоставлении кредитов ком­мерческими банками физическим и юридическим лицам характеризу­ется следующими количественными параметрами: риск как вероятность неуспеха (невозврата) кредита; допустимый риск; средний риск; возможные потери от дефолта кредита; среднее значение потерь; максимально допустимые потери; число кредитов в банке; возможное число разных кредитов; число опасных кредитов;  энтропия опасных кредитов [5].

Под кредитным риском понимают риск возникновения у кредитной организации убытков вследствие неисполнения, несвоевременного либо неполного исполнения должником финансовых обязательств перед кре­дитной организацией в соответствии с условиями договора. В балансе банка кредитный риск присутствует в составе активов по большинству позиций: ссуды, остатки на корреспондентских счетах, краткосрочные кредиты коммерческим банкам, ценные бумаги, приобретенные для пе­репродажи или инвестирования. Кредитный риск также возникает в связи с широким спектром банковской деятельности, включая выбор инвестиционных портфелей, контрагентов по сделкам с производными инструментами и иностранной валютой. Кредитный риск может появ­ляться в связи с риском проведения операций в данной стране, а также при выполнении функций гаранта. Кредитный риск оказывает прямое воздействие на состояние банковского капитала. В результате высокий кредитный риск снижает рыночную стоимость акций банка и сужает возможности кредитной организации воспользоваться облигационными займами с целью привлечения средств.

К методикам для количественной оценки кредитных рисков предъ­является особое требование по прозрачности, включающей количе­ственные оценки точности и робастности.

Прозрачность методики кредитного риска - это возможность видеть не только явление в целом, но и его детали. Прозрачность стала важ­нейшей характеристикой методик оценки кредитных рисков в силу необходимости наиболее полной идентификации как кредитного риска, так и самой модели кредитного риска. Под прозрачностью методики бу­дем понимать строгость используемых математических методов, сгла­живание субъективности экспертных оценок, наглядность результатов оценки и анализа риска, полное их понимание самими работниками банков, открытость методик для контролирующих органов и заемщи­ков. Прозрачность методики и результатов достигается вычислением вкладов инициирующих событий (критериев) в кредитный риск.

Для анализа, прогнозирования и управления кредитным риском каждому банку необходимо уметь количественно определять назван­ные характеристики, анализировать риск и выполнять постоянный мо­ниторинг компонент характеристик кредитного риска.

От точности распознавания зависит решение о выдаче или отказе в кредите, цена (процент) за риск и уровень резервирования на слу­чай дефолта кредита. Точность оценивается количеством относитель­ных ошибок в распознавании «плохих» и «хороших» кредитов (клиен­тов) и их средним количеством. Обычно выдвигается требование, что­бы «плохие» кредиты распознавались лучше. Отношение неправильно распознанных «хороших» и «плохих» кредитов выбирают от 2 до 10. Аналогично формулируется задача точности, если кредиты классифи­цируются не на два, а несколько классов. Сравнение разных методик на одних и тех же данных показало, что разные методики оценки риска отличаются по точности почти в два раза.

Робастность характеризует стабильность методик оценки кредит­ных рисков. Разные методики риска или одна методика при разных алгоритмах обучения по статистическим данным неодинаково класси­фицируют кредиты на «хорошие» и «плохие». Один и тот же кредит по одной методике может быть признан «плохим», а по другой методи­ке «хорошим». Такая нестабильность в классификации достигает 20% от общего числа кредитов. Сравнение разных методик на одних и тех же данных показало, что разные методики риска могут отличаться по робастности в семь раз.

Кредитование юридических и физических лиц является одним из ос­новных видов деятельности коммерческих и государственных крупных, средних и мелких банков. Каждый банк индивидуален, так как работа­ет по различным технологиям, обслуживает различные сегменты рынка банковских услуг, ориентируется на различные стратегические задачи. Индивидуальности банков способствует также конкуренция.

Кредитный бизнес связан с риском. Условия кредитной деятельно­сти изменяются, изменяется также допустимый уровень риска. Кредит­ная деятельность адаптируется к условиям развивающейся экономики страны и уровню жизни ее населения.

Большое значение для обеспечения устойчивого функционирования банка имеют методы количественной оценки и анализа кредитного рис­ка. Цена за риск должна максимально точно учитывать величину риска каждого кредита. Кроме средней величины риска, определяемой по ста­тистике предыдущей деятельности, банк должен знать количественную оценку и составляющие риска для каждого кредита.

Каждый банк разрабатывает свою модель риска для количественной оценки и анализа риска кредитов с учетом общих рекомендаций Базельского комитета по банковскому надзору. Чем выше точность оцен­ки риска кредитов, тем меньше потери банка, меньше процент за кре­дит и выше конкурентоспособность банка. От повышения точности и прозрачности методик выигрывает все общество в целом. Создание эф­фективной модели риска и оптимальное управление кредитным риском возможны только на основе постоянного количественного анализа статистической информации об успехах кредитов.

Существуют различные подходы к определению кредитного риска частного заемщика, начиная с субъективных оценок специалистов банка и заканчивая автоматизированными системами оценки риска. Ми­ровой опыт показывает, что основанные на математических моделях системы являются более действенными и надежными. В целях построения модели кредитного риска сначала производится выборка клиентов кредитной организации, о которых уже известно, хорошими заемщиками они себя зарекомендовали или нет. Такая вы­борка может варьироваться от нескольких тысяч до сотен тысяч, что не является проблемой на Западе, где кредитный портфель компаний может состоять из десятков миллионов клиентов. Выборка содержит информацию по двум группам кредитов, имевшим место в деятельно­сти банка: «хорошим» и «плохим» (проблемным или невозвращенным).

Ниже выполнен анализ прозрачности скоринговых методик оценки кредитных рисков


1.2.          Характеристики физического лица. Структура данных


Кредиты физических лиц описываются 20 признаками, каждый их которых имеет градации (Таблица 1.)


Таблица 1. Описание кредита физического лица

Номер признака

Наименование признака

Обозначение

Число градаций

0

Успешность кредита

Y

2

1

Сумма счета в банке

Z1

4

2

Срок займа

Z2

10

3

Кредитная история

Z3

5

4

Назначение займа

Z4

11

5

Сумма займа

Z5

10

6

Счета по ценным бумагам

Z6

5

7

Продолжительность работы

Z7

5

8

Взнос в частичное погашение

Z8

4

9

Семейное положение и пол

Z9

4

10

Совместные обязательства или поручитель

Z10

3

11

Время проживания в данной местности

Z11

4

12

Вид гарантии

Z12

4

13

Возраст

Z13

5

14

Наличие других займов

Z14

3

15

Наличие жилой площади

Z15

3

16

Количество займов с банком

Z16

4

17

Профессия

Z17

4

18

Число родственников на иждивении

Z18

2

19

Наличие телефона

Z19

2

20

Иностранный или местный житель

Z20

2


Таблица данных имеет вид


Таблица2. Структура статистических данных


В работе используются реальные данные. Всего 1000 наблюдений. 700 заемщиков не вернули кредит «1», 300 – вернули «0».


Глава 2. Статистические и эконометрические методы оценки риска


В банках используются, главным образом, следующие методики:

·                    Скоринговые методики;

·                    Кластерный анализ;

·                    Дискриминантный анализ;

·                    Дерево классификаций;

·                    Нейронные сети;

·                    Технологии Data mining;

·                    Линейная вероятностная регрессионная модель;

·                    Logit-анализ;

Приступим к описанию этих методик.


2.1. Скоринговые методики


Скоринг кредитов физических лиц представляет собой методику оценки качества заемщика, основанную на различных характеристиках клиентов, таких как доход, возраст, семейное положение, профессия и др. В результате анализа переменных получают интегрированный показатель, который оценивает степень кредитоспособности заемщика по ранговой шкале: «хороший» или «плохой». Дается ответ на вопрос, вернет заемщик кредит или нет? Качество заемщика оценивается опре­деленными баллами, отражающими степень его кредитоспособности. В зависимости от балльной оценки принимается решение о выдаче кре­дита и его лимитах [4].

Привлечение банками для оценки кредитоспособности квалифици­рованных специалистов имеет несколько недостатков: во-первых, их мнение все же субъективно; во-вторых, люди не могут оперативно об­рабатывать большие объемы информации; в-третьих, оплата хороших специалистов требует значительных расходов. Поэтому банки все боль­ше интересуются такими системами оценки риска, которые позволили бы минимизировать участие экспертов и влияние человеческого фак­тора на принятие решений.

Для оценки кредитного риска производится анализ кредитоспособ­ности заемщика, под которой понимается его способность полностью и в срок рассчитаться по своим долговым обязательствам. В соответ­ствии с таким определением основная задача скоринга заключается не только в том, чтобы выяснить, в состоянии клиент выплатить кредит или нет, но и в степени надежности и обязательности клиента.

Скоринг представляет собой математическую или статистическую модель, с помощью которой на основе кредитной истории «прошлых» клиентов банк пытается определить, насколько велика вероятность, что потенциальный заемщик вернет кредит в срок. Скоринг является методом классификации всей интересующей нас популяции на различ­ные группы, когда нам неизвестна характеристика, которая разделяет эти группы, но зато известны другие характеристики.

В западной банковской системе, когда человек обращается за кре­дитом, банк располагает следующей информацией для анализа: анкетой, которую заполняет заемщик; информацией на данного заемщика из кредитного бюро, в котором хранится кредитная история взрослого населения страны;  данными движения по счетам, если речь идет о клиенте банка.

Кредитные аналитики оперируют следующими понятиями: «харак­теристики-признаки» клиентов и «градации-значения», которые принимает признак. В анкете клиента характеристиками-признаками яв­ляются вопросы анкеты (возраст, семейное положение, профессия), а градациями-значениями— ответы на эти вопросы. В упрощенном виде скоринговая модель дает взвешенную сумму определенных характери­стик. В результате получают интегральный показатель (score); чем он выше, тем выше надежность клиента (табл.3.). Интегральный показатель каж­дого клиента сравнивается с неким заданным уровнем показателя. Ес­ли показатель выше этого уровня, то выдается кредит, если ниже этой линии, — нет.

Сложность в том, какие характеристики-признаки следует вклю­чать в модель и какие весовые коэффициенты должны им соответ­ствовать. Философия скоринга заключается не в поиске объяснений, почему этот человек не платит. Скоринг использует характеристики, которые наиболее тесно связаны с ненадежностью клиента. Неизвест­но, вернет ли данный заемщик кредит, но известно, что в прошлом люди этого возраста, этой профессии, с таким уровнем образования и числом иждивенцев кредит не возвращали (или возвращали).


Таблица 3. Скоринговая карта

Показатель

Значение

Баллы

Возраст

20 - 25

100


26 - 30

107


31 - 40

123


…………

…………..

Доход

1000 - 3000

130


3001 - 5000

145


5001 - 6000

160


…………

…………..


Среди преимуществ скоринговых систем западные банкиры указы­вают в первую очередь снижение уровня невозврата кредита. Далее отмечаются быстрота и беспристрастность в принятии решений, воз­можность эффективного управления кредитным портфелем, определе­ние оптимального соотношения между доходностью кредитных опера­ций и уровнем риска.


2.2. Кластерный анализ


Методы кластерного анализа позволяют разбить изучаемую совокупность объектов на группы однородных в некотором смысле объектов, называемых кластерами или классами. Иерархические и параллельные кластер-процедуры практически реализуемы лишь в задачах классификации не более нескольких десятков наблюдений. К решению задач с большим числом наблюдений (как в наших целях) применяют последовательные кластер-процедуры - это итерационные алгоритмы, на каждом шаге которых используется одно наблюдение (или небольшая часть исходных наблюдений) и результаты разбиения на предыдущем шаге. Идею этих процедур реализована в «SPSS» методе средних («K-Means Clustering») с заранее заданным числом  классов.

Алгоритм заключается в следующем: выбирается заданное число k- точек и на первом шаге эти точки рассматриваются как "центры" кластеров. Каждому кластеру соответствует один центр. Объекты распределяются по кластерам по такому принципу: каждый объект относится к кластеру с ближайшим к этому объекту центром. Таким образом, все объекты распределились по k кластерам. Затем заново вычисляются центры этих кластеров, которыми после этого момента считаются покоординатные средние кластеров. После этого опять перераспределяются объекты. Вычисление центров и перераспределение объектов происходит до тех пор, пока не стабилизируются центры.

Если данные понимать как точки в признаковом пространстве, то задача кластерного анализа формулируется как выделение "сгущений точек", разбиение совокупности на однородные подмножества объектов.

При проведении кластерного анализа обычно определяют расстояние на множестве объектов; алгоритмы кластерного анализа формулируют в терминах этих расстояний. Мер близости и расстояний между объектами существует великое множество. Их выбирают в зависимости от цели исследования. В частности, евклидово расстояние лучше использовать для количественных переменных, расстояние хи-квадрат - для исследования частотных таблиц, имеется множество мер для бинарных переменных.

Меры близости отличаются от расстояний тем, что они тем больше, чем более похожи объекты.







Пусть имеются два объекта X=(X1,…,Xm) и Y=(Y1,…,Ym). (табл.4. ) Используя эту запись для объектов, определить основные виды расстояний, используемых процедуре CLUSTER:

·                    Евклидово расстояние  (Euclidian distance).

·                    Квадрат евклидова расстояния (Squared Euclidian distance)

·                    Эвклидово расстояние и его квадрат целесообразно использовать для анализа количественных данных.

·                    Мера близости - коэффициент корреляции , где  и  компоненты стандартизованных векторов X и Y. Эту меру целесообразно использовать для выявления кластеров переменных, а не объектов. Расстояние хи-квадрат получается на основе таблицы сопряженности, составленной из объектов X и Y (таблица 4.), которые, предположительно, являются векторами частот. Здесь рассматриваются ожидаемые значения элементов, равные E(Xi)=X.*(Xi+Yi)/(X.+Y.) и E(Yi)=Y.*(Xi+Yi)/(X.+Y.), а расстояние хи-квадрят имеет вид корня из соответствующего показателя


.

·                    Расстояние Фи-квадрат является расстоянием хи-квадрат, нормированным "число объектов" в таблице сопряженности, представляемой строками X и Y, т.е. на корень квадратный из N=X.+Y. .

Кластерный анализ является описательной процедурой, он не позволяет сделать никаких статистических выводов, но дает возможность провести своеобразную разведку - изучить "структуру совокупности".

Проведем кластеризацию по всем 20 признакам и всем наблюдениям. В результате работы программы выводится таблица 5. (показана лишь ее часть)


Таблица 5. Cluster Membership

Case Number

Y

Cluster

Distance

…………

……

…………

822

0

0

2985,732

823

1

0

2996,715

824

0

0

3040,706

825

1

0

3054,689

826

0

0

3099,727

827

1

0

3108,674

828

1

1

3100,310

829

1

1

3053,258

830

1

1

3043,285

831

1

1

2991,286

…………

……

………

…………


Столбец Y показывает, относится ли наблюдение к группе вернувших кредит “0” или навернувших “1”, столбец «Cluster» показывает принадлежность к той или иной группе наблюдения на основе кластеризации.

Таблица 6 указывает число наблюдений в том или ином кластере.


Таблица 6. Number of Cases in each Cluster

 

Cluster

1

822,000

 

0

178,000

 

 

Valid

1000,000

 

Missing

,000


Проанализируем качество классификации.

Страницы: 1, 2


© 2010 Современные рефераты