4.2 Расчет реактивных сопротивлений элементов электрической цепи 20
4.3 Определение действующих значений токов во всех ветвях электрической цепи 21
4.4 Составление уравнения мгновенного значения тока источника 21
4.5 Составление баланса активных и реактивных мощностей 21
5. Исследование переходных процессов в электрических цепях 24
5.1 Определение постоянной времени фи длительности переходного процесса 24
5.2 Определение тока в цепи и энергии электрического (магнитного) поля при t = 3 фи 25
5.3 Построение графиков I=f(t); (Uc=f(t)) 25
Заключение 27
Введение
Целью данного курсового проекта является формирование у учащегося навыков по решению различных типов задач.
Задача анализа электрического состояния цепей постоянного/переменного тока заключается в определении токов в отдельных ветвях, напряжения между двумя любыми узлами цепи или конкретно на отдельном элементе, а также построение необходимых диаграмм. Расчеты производятся различными методами: по I и II закону Кирхгофа, методом наложения, методом эквивалентного генератора, используется метод расчета электрической цепи с помощью комплексных чисел. При этом задаются: конфигурация и параметры цепи, параметры элементов включенных в цепь, а также параметры источников питания. Если цепь содержит хотя бы один нелинейный элемент, то к ней применяется графический метод решения. Если исследуются переходные процессы в электрической цепи, то необходимо знать начальные значения токов на индуктивностях и напряжения на емкостях.
Работа над данным курсовым проектом позволяет решить следующие задачи:
закрепление теоретических знаний, полученных на лекционном курсе;
развитие творческого технического мышления;
усвоение методики выполнения расчетов;
развитие навыков по работе со справочной литературой;
развитие умения составления и оформления пояснительной записки и графической части проекта;
Курсовое проектирование по предмету “Теоретические основы электротехники” является завершающим этапом изучения данного предмета и занимает важное место в процессе подготовки будущего специалиста к работе на производстве.
1. Анализ электрического состояния линейных электрических цепей постоянного тока
1.7 Построение потенциальной диаграммы для замкнутого контура, включающего два источника
Возьмем контур ABCDEFG (рис.1.10). Обход контура будем проводить против часовой стрелки и заземлим точку А.
I=(E2-E1) /(R5+R3+R6+r01+r02) =10/121=0,08264 A.;
E R5 D r01 C E1 B
R3 I
F R6 G r02 A E2
Рис.1.10
цA=0;
цB=цA+E2=40 B.;
цC=цB-E1=40-30=10 B.;
цD=цC-Ir01=9,75 B.;
цE=цD-IR5=6,2 B.;
цF=цE-IR3=4,4 B.;
цG=цE-IR6=0,2 B.;
цA=цG-Ir02=0 B.;
Потенциальная диаграмма:
2 Анализ электрического состояния нелинейных электрических цепей постоянного тока
2.1 Построение ВАХ для заданной схемы (рис.2.0)
R4
+
UHЭ1 НЭ2
R3
-
Рис.2.0
Числовые параметры:
U=200 B.; R3=27 Om.; R4=30 Om.; ВАХ нелинейных элементов (рис.2.1);
I, A
7
6
5
НЭ1
4
НЭ2
3
2
1
0
40 80 120 160 200 240 280 U, B
Рис. 2.1
2.2 Определение на основе ВАХ токов во всех ветвях схемы и напряжений на отдельных элементах.
По формуле I=U/R строим ВАХ линейных элементов совмещенной с ВАХ нелинейных элементов (рис.2.2).
I3=U/R3=200/27=7,4 A.;
I4=U/R4=200/30=6,7 A.;
Элементы R4 и НЭ2 соединены последовательно, следовательно строим их результирующую ВАХ (H24) путем алгебраического сложения напряжений при выбранном токе UH4=UHЭ2+UR4;
Элемент Н24 и НЭ1 соединены параллельно, следовательно строим их результирующую ВАХ (H124) путем алгебраического сложения токов при выбранном напряжении IH124=IH24+IHЭ1;
Элементы Н124 и R3 соединены последовательно, следовательно строим их результирующую ВАХ (H1234) таким же образом, что и в первом случае UH1234=UH124+UR3;
С помощью полученной ВАХ H1234 определяем токи в ветвях и напряжения на элементах.
В результате получаем:
3. Анализ электрического состояния однофазных линейных электрических цепей переменного тока
e R1 d C1 a
+
R2 R3
~U
c f
L2 C2
-
k L2 b
Рис.3.0
Числовые параметры:
U=Umsin(щt+ш) R1=16Om L1=33 mkГн
f=18 kГц R2=30 Om L2=5,1 mkГн
Um=56 B R3=42 Om C1=22 mkФ
ш=-60 град C2=5,0 mkФ
3.1 Расчет реактивных сопротивлений элементов электрической цепи
XL1=2рfL1=3,7303 Om;
XL2=2рfL2=0,5765 Om;
XC1=1/(2рfC1) =0,4021 Om;
XC2=1/(2рfC2) =1,7693 Om;
Представим схему (рис.3.0) в виде (рис.3.1):
Z1
I1 I3 I4
I2 Z3 Z4
Z2
Рис.3.1
Находим комплексные сопротивления ветвей, затем участков цепи и всей цепи:
4.2 Расчет реактивных сопротивлений элементов электрической цепи
ZA= R2A+X2LA =420,70893 Om;
ZB= R2B+X2CB =303,84865 Om;
ZC= R2C+X2LC =578,97237 Om;
cosцA=RA/ZA=0,66554 => цA=480
cosцB=RB/ZB=0,38835 => цB=670
cosцC=RC/ZC=0,25389 => цC=750
4.3 Определение действующих значений токов во всех ветвях электрической цепи
IA=UA/ZA=0,80816 A;
IB=UB/ZB=1,11898 A;
IC=UC/ZC=0,58725 A; c
Определяем ток в нулевом проводе, для этого строим векторную диаграмму.
Под углом 1200 относительно друг друга строятся векторы фазных напряжений одинаковой длинны, векторы же фазных токов строятся в масштабе под углами ц относительно соответствующих фазных напряжений. Если нагрузка носит индуктивный характер, то вектор тока отстает от напряжения на угол ц, если же емкостной, то опережает на угол ц.
MI=0,2 A/см;
Из диаграммы видно, что ток в нулевом проводе равен I0=0,16 A;
4.4 Составление уравнения мгновенного значения тока источника
i=Imsin(щt+ш) A; i=
4.5 Составление баланса активных и реактивных мощностей
PA=UIAcosцA=182,87335 Вт;
PB=UIBcosцB=147,749 Bт;
PC=UICcosцC=50,69295 Bт;
PОБЩ=PA+PB+PC=381,3153 Bт;
QA=UIAsinцA=204, 19717 Вар;
QB=UIBsinцB=350, 20901 Вар;
QC=UICsinцC=192,96158 Вар;
QОБЩ=QA+QB+QC=747,26776 Вар;
SA=UIA=247,7744 ВА;
SB=UIB=380,4532 ВА;
SC=UIC=199,665 ВА;
SОБЩ= P2ОБЩ+Q2ОБЩ = 838,93412 ВА;
Символический метод
Выражаем фазные напряжения в комплексной форме:
UA=UA=340ej0 B;
UB=UB=340e-j120 B;
UC=UC=340e-j240 B;
Выражаем фазные сопротивления в комплексной форме: