Анализ энергоэффективности системы теплоснабжения учебных помещений
Анализ энергоэффективности системы теплоснабжения учебных помещений
МНСТЕРСТВО ОСВТИ НАУКИ УКРАЇНИ
СУМСЬКИЙ ДЕРЖАВНИЙ УНВЕРСИТЕТ
НЖЕНЕРНИЙ ФАКУЛЬТЕТ
Кафедра прикладної гідроаеромеханіки
КВАЛІФІКАЦІЙНА ВИПУСКНА РОБОТА БАКАЛАВРА
на тему “Аналіз енергоефективності системи теплопостачання навчальних приміщень корпусу М СумДУ (ІІ поверх)”
зі спеціальності 7.000008 “Енергетичний менеджмент”
Суми-2010
РЕФЕРАТ
Бакалаврская работа содержит 39 с., 5 рис., 11 табл., 2 приложения, 14 источников.
Объект исследования: система теплоснабжения помещений корпуса М (ІІ этаж) СумГУ.
Целью работы является разработка организационных и технических мероприятий по энергосбережению в системе теплоснабжения и их финансовая оценка.
Графические материалы: схема системы теплоснабжения помещений корпуса М (IІ этаж) СумГУ, плакат результатов расчёта системы теплоснабжения и финансовая оценка предложенных организационных и технических мероприятий. Всего два листа формата А1.
Приведены описание системы теплоснабжения, описание необходимого оборудования для проведения энергетического аудита, необходимые расчёты, план организационных и технических мероприятий по энергосбережению и их финансовая оценка.
4.4 Расчёт количества секций нагревательных приборов
5. Результаты расчёта системы теплоснабжения
5.1 Сопротивления теплопередаче ограждающих конструкций
5.2 Теплопотери помещений
5.3 Теплопоступления в помещения
5.4 Расчёт необходимого количества секций нагревательных приборов
6. Финансовый анализ энергосберегающих мероприятий
7. Индивидуальное задание
7.1 Пирометрия как метод измерения температуры
7.2 Приборы бесконтактного измерения температуры
Выводы
Список литературы
ВВЕДЕНИЕ
Энергетический аудит - это вид деятельности, направленный на уменьшение потребления энергетических ресурсов субъектами хозяйствования за счёт увеличения эффективности их использования.
Главным требованием является правильная постановка целей и задач проведения энергоаудита. Энергетический аудит предназначен для разрешения таких основных задач:
- обследование состояния использования энергетических ресурсов на объекте;
- разработка организационно-технических мероприятий, направленных на уменьшение энергопотреблений;
Энергетический аудит проводится энергосервисными компаниями или независимыми экспертами (энергоаудиторами), уполномоченными субъектами хозяйствования для его проведения.
Проведение энергоаудита состоит в выполнении шести последовательных этапов:
- определение объёма потребления энергии и её цены за репрезентативный промежуток времени;
- обследование топливно-энергетических потоков на объекте;
- анализ эффективности использования энергии и энергоресурсов;
- разработка рекомендаций по эффективному использованию энергоресурсов;
При проведении энергоаудита необходимо сравнить фактическое теплопотребление с расчетным, которое необходимо поставить потребителю.
В данной работе произведён анализ системы теплоснабжения помещений второго этажа корпуса М Сумского государственного университета.
Тепловое потребление - это использование тепловой энергии для разнообразных коммунально-бытовых и производственных целей (отопление, вентиляция, кондиционирование воздуха, души, прачечные, различные технологические теплоиспользующие установки и т.д.).
Отопительные системы разрешают только одну из задач по созданию искусственного климата в помещениях. Они служат для поддержания в холодное время года заданной температуры воздуха во внутренних помещениях здания.
Система теплоснабжения представляет собой комплекс элементов, необходимых для обогрева помещений. Основными элементами являются: 1)источники теплоты; 2)теплопроводы, соединяющие источники тепла с тепловыми пунктами; 3) тепловые пункты, размещённые внутри или вне здания, связывающие местные системы потребления тепла с источником; 4) нагревательные приборы. Передача тепла осуществляется с помощью теплоносителей - нагретой воды, пара или воздуха.
При определении тепловой нагрузки систем отопления учитываются особенности теплового режима помещений. В помещениях с постоянным тепловым режимом, к которым относятся промышленные здания, сельскохозяйственные постройки, жилые и общественные здания, тепловая нагрузка определяется из теплового баланса.
Для составления теплового баланса и оценки состояния системы отопления необходимо оценить значения тепловой мощности, потребляемой на отопление зданий различного назначения.
1. ОПИСАНИЕ СИСТЕМ ТЕПЛОСНАБЖЕНИЯ ИССЛЕДУЕМЫХ ПОМЕЩЕНИЙ
Объектом теплоэнергетического исследования являются учебные аудитории и вспомогательные помещения 2 этажа корпуса М Сумского государственного университета. Корпус представляет собой четырёхэтажное здание. Окна исследуемых помещений выходят на северную и на южную стороны. Стены корпуса кирпичные, облицованы плиткой, перегородки также кирпичные. Объектом обследования являются помещения второго этажа без учёта коридора и лестничных клеток.
По результатам предварительного осмотра можно сделать вывод, что система отопления корпуса представляет собой однотрубную вертикальную систему с верхней разводкой. Данная система получила распространение при строительстве зданий выше 3 этажей. Преимуществом данной системы является меньшая металлоёмкость, чем при двухтрубной системе. Движение горячего теплоносителя происходит сверху вниз через трубы и отопительные приборы.
Далее производим детальный анализ исследуемых помещений.
В аудитории 201 находится три окна, которые выходят на южную сторону. В этой аудитории отопительные приборы находятся под каждым окном. В данном случае отопительными приборами являются чугунные радиаторы типа МС-140 108 с десятью секциями. Горячий теплоноситель подаётся к отопительным приборам по вертикальным стоякам сверху вниз. На каждом радиаторе установлена задвижка для регулирования подачи. В данной аудитории произведены сжимы осевых замыкающих участков стояков для увеличения коэффициента затекания воды в нагревательные приборы. Температура в помещении превышает санитарно-гигиенические нормы tнорм=18 єС.[2]
Окна аудитории 203 выходят на северную сторону. Помещение отапливается тремя радиаторами типа МС-140-108, которые расположены под тремя окнами. Два радиатора имеют по 10 секций, в одном радиаторе 9 секций. На подводках к отопительным приборам установлены вентили. Температура внутри помещения превышает вышеуказанную норму.
Аудитория 204 расположена с северной стороны здания и имеет два окна. Под каждым из окон расположен чугунный радиатор типа МС-140-108 с девятью секциями. Регулировочный вентиль установлен на одной из подводок к прибору. Температура в помещении превышает вышеприведенную норму.
Аудитория 205 имеет два окна, выходящих на северную сторону. Под каждым окном расположен десятисекционный чугунный радиатор марки МС-140-108. Теплоноситель питает радиаторы по вертикальному стояку с прямым замыкающим участком. На подводках к отопительным приборам имеются вентили. Температура в помещении превышает санитарно-гигиенические нормы.
Два окна аудитории 206 выходят на северную сторону. В аудитории имеются два чугунных радиатора типа МС-140-108, расположенных под световыми проёмами. В одном радиаторе десять секций, в другом - девять секций. Температура в помещении ниже вышеуказанной нормы.
Аудитория 207 имеет два окна, выходящих на северную сторону. Под каждым окном расположен девятисекционный чугунный радиатор типа МС-140-108. Теплоноситель поступает к отопительным приборам по вертикальному стояку с осевым замыкающим участком. Температура в помещении ниже санитарно-гигиенической нормы.
Три окна аудитории 209 выходят на южную сторону. Под каждым из окон расположен девятисекционный чугунный радиатор марки МС-140-108. В помещении проходят два вертикальных стояка: один с односторонним присоединением, другой с двусторонним присоединением отопительных приборов. Температура в помещении выше приведенной нормы.
Аудитория 211 расположена с южной стороны здания и имеет одно окно. Под окном установлен чугунный радиатор типа МС-140-108 с десятью секциями. Питание радиатора производится по подводкам от магистрального трубопровода, расположенного на лестничной клетке. Температура в помещении превышает нормы.[2]
Окно туалета выходит на южную сторону. Под окном расположен девятисекционный чугунный радиатор типа МС-140-108. Питание прибора производится по вертикальному стояку и подводкам. Температура в помещении ниже вышеуказанной нормы.
2. ОБОРУДОВАНИЕ, ИСПОЛЬЗУЕМОЕ ДЛЯ АУДИТА СИСТЕМ ТЕПЛОСНАБЖЕНИЯ И РЕЗУЛЬТАТЫ ИЗМЕРЕНИЙ
Для проведения энергоаудита визуального осмотра помещений недостаточно, поэтому нужно произвести замеры некоторых параметров.
Используем следующие измерительные приборы:
- измерительная рулетка;
- пирометр.
Измерительная рулетка служит для определения геометрических размеров помещений. Предел измерения прибора 3 метра, погрешность ±0,5 мм. Результаты замеров приводим в таблице 3.1.
Таблица 3.1 - Геометрические размеры помещений
№
п/п
Название
помещения
Размер помещений
Объём
Помещения V, м3
Длина а, м
Ширина b, м
Высота h, м
1
201
10,56
5,97
3,40
214,35
2
203
10,52
5,95
3,40
212,80
3
204
6,90
6,0
3,40
140,76
4
205
7,05
6,0
3,40
143,82
5
206
7,0
5,90
3,40
140,42
6
207
7,67
5,96
3,40
155,42
7
209
10,93
5,97
3,40
221,85
8
211
3,5
6,00
3,40
71,40
9
Туалет
3,66
6,14
3,40
76,41
Температуру предметов внутри помещений (парта, стол) прибора измеряем лазерным пирометром MiniTemp MT2 фирмы Raytek.
Таблица 3.2 - Технические характеристики лазерного пирометра МТ2
Коэффициент излучения
0,95
Наличие лазера (класс II)
Точечный целеуказатель
Сохранение информации на дисплее
7 сек
Подсветка экрана
Автоматическая
Оптическое разрешение D:S
1:6
Рекомендуемое расстояние
До 100 см
Диапазон измерений
От -18°C до +275°C
Точность, %
± 2
Время отклика, мсек
500
Рабочая температура, °C
0...50
Питание
9В батарейка или аккумулятор
Размеры, мм
152Ч101Ч38
Вес, кг
0,227
3. АНАЛИЗ РЕЗУЛЬТАТОВ ИССЛЕДОВАНИЯ И ПЛАН ЭНЕРГОСБЕРЕГАЮЩИХ МЕРОПРИЯТИЙ
В результате проведения первоначального этапа энергоаудита можно сделать вывод, что система отопления находится в неудовлетворительном состоянии и не отвечает всем требованиям (санитарно-гигиенические, монтажные, эстетические), таким образом, тепловая мощность системы используется неэффективно. Часть исследованных помещений имеет температуру, превышающую санитарно-гигиенические нормы. Это свидетельствует об избыточном количестве секций в радиаторах.
Для части помещений характерен недостаточный прогрев, так как при засорении отопительных приборов уменьшается поступление теплоносителя в радиатор и движение теплоносителя происходит большей частью по замыкающим участкам. В аудитории 204 часть теплоты от радиатора поглощается письменным столом, который загораживает теплообменник.
В результате проведения энергетического аудита помещений корпуса М (второй этаж) Сумского государственного университета был составлен план энергосберегающих мероприятий:
1. Для улучшения протекания теплоносителя по отопительным приборам в помещениях с недостаточным теплопоступлением необходимо произвести сжимы осевых замыкающих участков главного стояка или установить смещённые замыкающие участки меньшего диаметра.
2. Снять лишние секции в радиаторах в тех помещениях, где температура превышает санитарно-гигиенические нормы.
3. Для удаления зарастания в трубопроводах и отопительных приборах произвести промывку системы отопления.
4. Для уменьшения теплопотерь при движении теплоносителя подающий стояк необходимо покрыть тепловой изоляцией.
5. Убрать от радиаторов теплопоглощающие предметы, затрудняющие теплоотдачу.
4. РАСЧЁТ НЕОБХОДИМОЙ ТЕПЛОВОЙ МОЩНОСТИ СИСТЕМЫ ТЕПЛОСНАБЖЕНИЯ
Теплозащитные качества ограждения характеризуют величиной сопротивления теплопередаче R0, которая численно равна падению температуры в градусах при прохождении теплового потока, равного 1 Вт, через 1 м2 ограждения. Общее сопротивление теплопередаче определяем по формуле [3]:
,(4.1)
гдеRВ - сопротивление теплоотдаче внутренней поверхности, м2·К/Вт;
RН- сопротивление теплоотдаче наружной поверхности, м2·К/Вт;
RК - термическое сопротивление ограждающей конструкции, м2·К/Вт.
Сопротивление теплоотдаче внутренней поверхности:
,(4.2)
где - коэффициент теплоотдачи внутренней поверхности ограждающей конструкции, для стен, полов, гладких потолков принимаем [3].
Сопротивление теплоотдаче наружной поверхности:
,(4.3)
где - коэффициент теплоотдачи наружной поверхности ограждающей конструкции, для наружных стен принимаем [3].
Термическое сопротивление ограждающей конструкции RK, с последовательно расположенными однородными слоями определяем как сумму термических сопротивлений отдельных слоёв [2]:
,(4.4)
где - термические сопротивления отдельных слоёв ограждающей конструкции, м2·К/Вт.
Термическое сопротивление отдельного слоя определяем по формуле [3]:
,(4.5)
где - толщина слоя, м;
- коэффициент теплопроводности материала слоя, Вт/(м·К).
Требуемое сопротивление теплопередаче R0тр, м2·К/Вт, определяется по формуле [2]:
,(4.6)
гдеn - коэффициент, учитывающий положение наружной поверхности ограждающих конструкций по отношению к наружному воздуху;
tB - расчётная температура внутреннего воздуха, принимаем равной 18 єС [2];
tН - расчётная зимняя температура наружного воздуха, принимаем равной для Сум -24 єС [2];
- нормативный температурный перепад между температурой внутреннего воздуха и температурой внутренней ограждающей конструкции, равный для наружных стен общественных зданий 7 єС;
- коэффициент теплоотдачи внутренней поверхности ограждающей конструкции, принятый ранее равным 8,7 Вт/(м2·К).
Сравниваем значения, полученные в результате расчёта формул (4.1) и (4.6) и в дальнейших расчётах принимаем большее из значений.
4.2 Расчёт теплопотерь помещений
Тепловая мощность системы отопления для компенсации теплонедостатка в помещении определяем по формуле [3]:
,(4.7)
где - суммарные тепловые потери помещениями, Вт;
- суммарные теплопоступления в помещение, Вт.
Если в здании >, то отапливать помещение не нужно.
,(4.8)
,(4.9)
Где Qогр - потери теплоты помещения через ограждающие конструкции [3]:
,(4.10)
F - расчётная площадь ограждающей конструкции, м2;
R0 - сопротивление теплопередаче ограждающей конструкции, м2·К/Вт;
tB- расчётная температура воздуха, єС;
tН- расчётная температура наружного воздуха, єС;
n - коэффициент, учитывающий положение наружной поверхности ограждающих конструкций по отношению к наружному воздуху;
в - добавочные потери теплоты в долях от основных потерь.
Затраты теплоты для QИ для нагревания инфильтрующегося воздуха рассчитываем по формуле [3]:
,(4.11)
где - расход инфильтрующегося воздуха через ограждающие конструкции помещения, принимаем на 1 м2 площади окна [3];
с - удельная теплоёмкость воздуха, равная 1 кДж/(кг·єС) [3];
tB, - расчётные температуры воздуха в помещении и наружного воздуха в холодный период года, єС;
k - коэффициент, учитывающий влияние встречного теплового потока в конструкциях, для стыков панелей стен, для окон с тройными переплётами равный 0,7 [3].
Подсчитанные для каждого помещения расходы теплоты на нагревание инфильтрующегося воздуха добавляем к теплопотерям этих помещений.
Для поддержания расчётной температуры воздуха помещения система отопления должна компенсировать теплопотери помещения.
4.3 Расчёт теплопоступлений в помещения
Тепловой поток, поступающий в помещение в виде бытовых тепловыделений [3]
,(4.12)
Где FП - площадь пола данного отапливаемого помещения, м2.
Явные тепловыделения (излучение и конвекция) [3]
,(4.13)
гдевИ - коэффициент, учитывающий интенсивность выполняемой человеком работы, принимаемый для лёгкой работы равным 1 [3];
вОД - коэффициент, учитывающий теплозащитные свойства одежды и равный для обычной одежды - 0,66 [3];
нВ- подвижность воздуха в помещении (в жилых и административных зданиях нВ0,1…0,15 м/с);
tП - температура помещения, єС.
Тепловыделения при искусственном освещении и работающем электрическим оборудованием:
,(4.14)
Где k - коэффициент, учитывающий фактически затрачиваемую мощность, одновременность работы электрооборудования, долю перехода электроэнергии в теплоту, которая поступает в помещение (в зависимости от технологического процесса k=0,15…0,95); для электрических светильников равный k=095 [3];
Nэл- суммарная мощность осветительных приборов или силового оборудования.
4.4 Расчёт количества секций нагревательных приборов
Расчётная плотность теплового потока отопительного прибора qпр, Вт/м2, для условий работы, отличных от стандартных, по формуле для теплоносителя - воды [3]:
,(4.15)
где - номинальная плотность теплового потока отопительного прибора при стандартных условиях работы, равная для чугунных радиаторов типа МС-140-108 758 Вт/м2. Номинальную плотность теплового потока qном, получают путём тепловых испытаний отопительного прибора для стандартных условий работы в системе водяного отопления, когда средний температурный напор , расход воды в приборе составляет , а атмосферное давление рб=1013,3 гПа;
- температурный напор, равный разности полусуммы температур теплоносителя на входе и выходе отопительного прибора и температуры воздуха помещения, принимаем равным 28 єС;
Gпр - действительный расход воды в отопительном приборе, принимаем равным 0,009 кг/с [3];
n, p - экспериментальные значения показателей степени, для чугунного радиатора типа МС-140-108 n=0,3, р=0,02 [3];
спр - коэффициент, учитывающий схему присоединения отопительного прибора и изменения показателя степени р в различных диапазонах расхода теплоносителя, для чугунного радиатора типа МС-140-108 спр=1,039 [3];.
Расчётную площадь отопительного прибора рассчитываем по формуле [3]:
,(4.16)
гдеQпотр - теплопотребность помещения, равная теплопотерям за вычетом теплопоступлений, Вт;
Qтр - суммарная теплоотдача открыто проложенных в пределах помещения стояков, подводок, к которым непосредственно присоединён прибор (принимаем 10% от Qпотр);
в1 - коэффициент учёта дополнительного теплового потока устанавливаемых отопительных приборов за счёт округления сверх расчётной величины;
в2 - коэффициент учёта дополнительных потерь теплоты отопительными приборами у наружных ограждений.
Расчётное число секций чугунных радиаторов по формуле [3]:
,(4.17)
гдеf1 - площадь поверхности нагрева одной секции, зависящая от типа радиатора, принятого к установке в помещении, м2;
в4 - коэффициент, учитывающий способ установки радиатора в помещении, принимаем при открытой установке равный 1,0 [3];
в3 - коэффициент, учитывающий число секций в одном радиаторе, принимаем равный 1,0 [3].
5. РЕЗУЛЬТАТЫ РАСЧЁТА СИСТЕМЫ ТЕПЛОСНАБЖЕНИЯ
5.1 Сопротивления теплопередаче ограждающих конструкций
Сопротивление теплоотдачи внутренней поверхности определяем по формуле (4.2):
.
Сопротивление теплоотдаче наружной поверхности по формуле (4.3):
.
Для определения термического сопротивления используем формулы (4.4) и (4.5). Для наружной стены отдельные слои составляют: кладка из кирпича обыкновенного общей толщиной 0,51 м, слой штукатурки из цементно-песчаного раствора толщиной 0,02 м и слой облицовочной плитки толщиной 0,01 м. Коэффициенты теплопроводности л данных материалов [2]: кирпич - 0,81 Вт/(м·К), цементно-песчаная штукатурка - 0,93 Вт/(м·К), облицовочная плитка - 0,89 Вт/(м·К).
Таким образом, термическое сопротивление наружной стены:
.
Общее сопротивление теплопередаче рассчитываем по формуле (4.1) для наружной стены:
.
Для определения требуемого сопротивления теплопередаче расчётная температура внутреннего воздуха tB=18 єС, наружного воздуха tН= -24 єС [2]. Нормативный температурный перепад между температурой внутреннего воздуха и температурой внутренней ограждающей конструкции для наружных стен общественных зданий . Коэффициент, учитывающий положение наружной поверхности ограждающих конструкций по отношению к наружному воздуху для наружных стен и покрытий n=1. Требуемое сопротивление теплопередаче определяем по формуле (4.6):
.
Так как требуемое сопротивление теплопередаче больше общего сопротивления, то для дальнейших расчётов принимаем R0=0,689 м2·К/Вт.
5.2 Теплопотери помещений
Сопротивление наружной стены без учёта окна , а для окна принимаем [2].
Расчётная температура внутреннего воздуха tB=18 єС, наружного воздуха tН= -24 єС [2] Для наружных стен и покрытий коэффициент n=1. Для определения площадей ограждающих конструкций данные берём из таблицы 3.1. Для аудиторий 203, 204, 205, 206, и 207 учитываем добавочные теплопотери на ориентацию по отношению к сторонам света, в данном случае на северную в=0,1 [3].
Исходя из разной площади окон в аудиториях, плотности воздуха с=1,332 кг/м3, получаем произведением плотности воздуха на площадь окна расход инфильтрующегося воздуха : для аудиторий 201, 203, 209 - 15,98 кг/ч; для аудиторий 204, 205, 206, 207 - 10,66; для кабинета 211 и туалета - 5,33 кг/ч [10].
Потери теплоты помещений через ограждающие конструкции рассчитываем по формуле (4.10), для нагревания инфильтрующегося воздуха - по формуле (4.11), общие теплопотери - по формуле (4.8).
Результаты расчёта теплопотерь в помещениях заносим в таблицу 5.1.
Таблица 5.1 - Теплопотери помещений
Помещение
Температура в помещении tB, єС
,
Вт
,
Вт
,
Вт
,
Вт
201
18
1457,14
1200
131,55
2788,69
203
1593,73
1320
131,55
3045,28
204
1018,05
880
87,75
1985,8
205
1018,05
880
87,75
1985,8
206
1059,45
880
87,75
2027,2
207
1212,19
880
87,75
2179,94
209
1533,82
1200
131,55
2865,37
211
481,57
400
43,86
925,43
Туалет
511,73
400
43,86
955,59
5.3 Теплопоступления в помещения
Теплопоступления в виде тепловых тепловыделений рассчитываем по формуле (4.12), явные теплопоступления - по формуле (4.13), теплопоступления при искусственном освещении и работающем электрическим оборудованием - по формуле (4.14). Общие теплопоступления рассчитываем по формуле (4.9), а тепловую мощность системы отопления - по формуле (4.7).
Подвижность воздуха в помещении принимаем 0,13 м/с. [3] Результаты расчёта теплопоступлений в помещения заносим в таблицу 5.2.
Таблица 5.2 - Теплопоступления в помещения и тепловая мощность системы отопления
Помещение
Температура в помещении tB, єС
,
Вт
,
Вт
,
Вт
,
Вт
,
Вт
201
18
1323,84
69,72
304,0
1697,56
1091,13
203
1314,47
69,72
304
1688,19
1357,15
204
875,7
69,72
228
1173,42
812,38
205
875,7
69,72
228
1173,42
812,38
206
867,3
69,72
228
1165,02
861,18
207
876,12
69,72
228
1173,84
1006,03
209
1370,29
69,72
304
1744,01
1121,36
211
441
69,72
76
586,72
338,71
туалет
471,92
69,72
76
617,64
337,95
5.4 Расчёт необходимого количества секций нагревательных приборов
Рассчитываем плотность теплового потока отопительного прибора по формуле (4.15):
.
Площадь отопительного прибора рассчитываем по формуле (4.16). Коэффициент для чугунных радиаторов, установленных у наружной стены принимаем в2=1,02.
Количество секций чугунных радиаторов определяем по формуле (4.17), причём площадь поверхности нагрева одной секции принимаем f1=0,244 м2 [3]. Результаты расчёта площади и количества отопительных приборов заносим в таблицу 5.3.
Таблица 5.3 - Расчёт отопительных приборов
Помещение
Температура в помещении tB, єС
в1
Fр,
м2
Nр,
шт.
201
18
1,08
4,83
20
203
1,08
6,00
25
204
1,13
3,76
16
205
1,13
3,76
16
206
1,08
4,0
16
207
1,08
4,47
19
209
1,08
4,97
21
211
1,13
1,58
7
туалет
1,13
1,56
7
6. ФИНАНСОВЫЙ АНАЛИЗ ЭНЕРГОСБЕРЕГАЮЩИХ МЕРОПРИЯТИЙ
Определяем действительную площадь отопительного прибора в помещениях при установленном числе секций, преобразовывая формулу (4.17):
,(6.1)
гдеNр - количество установленных секций радиаторов, принимаем по результатам проведения первого этапа энергоаудита;
f1 - площадь поверхности нагрева одной секции, для чугунных радиаторов принимаем f1=0,244 м2 [3];
в3 - коэффициент, учитывающий число секций в одном радиаторе, принимаем равный 1,0 [3];
в4 - коэффициент, учитывающий способ установки радиатора в помещении, принимаем при открытой установке равный 1,0 [3].