Атомное ядро любого химического элемента состоит из протонов и нейтронов, связанных между собой ядерными силами (сильным взаимодействием). Протон - ядро атома водорода имеет положительный заряд, равный абсолютной величине заряда электрона и спин (собственный механический момент импульса, величина любой проекции которого может быть равна ±(h/2p)/2.). Нейтрон - электронейтральная частица c таким же, как у протона спином. Протоны и нейтроны имеют очень близкие массы (масса нейтрона больше массы протона приблизительно на две массы электрона) и неразличимы с точки зрения ядерных сил (т.н. зарядовая независимость ядерного взаимодействия), их обычно называют нуклонами, т.е., "ядерными частицами". Ядра, имеющие одинаковое число протонов, но разное число нейтронов, называются изотопами. У легких и средних ядер число протонов и нейтронов примерно одинаково.
Для обозначения конкретного ядра используют запись AZX, где X - символ элемента, A - массовое число, равное общему числу протонов и нейтронов ядра, Z - атомный номер элемента в таблице Менделеева, равный числу протонов в ядре. (Поскольку порядковый номер Z определен названием элемента, его при записи часто опускают.)
Атомная масса ядра углерода 12C выбрана равной 12, т.е. шкала атомных масс основана на массе 12C.
Экспериментально (на основе методов дифракционного рассеяния пучков высокоэнергичных протонов и нейтронов) установлено, что у всех ядер, за исключением самых легких, средний радиус ядра дается выражением
R » (1,2·10-15м)A1/3.
Дифракционное рассеяние позволяет получить сведения не только о размере, но и о распределении материи внутри ядра.
Чтобы объяснить, почему протоны внутри ядра очень прочно связаны, потребовалось ввести новую фундаментальную силу. Для преодоления электростатического отталкивания протонов эти (ядерные) силы должны быть больше электростатических.
Рис. 1
В современной физике, основанной на квантовых принципах, вместо сил принято использовать понятие (потенциальной) энергии взаимодействия, т.к., именно потенциальная энергия взаимодействия входит в уравнение Шредингера (см. Задание 4) или его обобщения. Это позволяет найти состояния системы (волновые функции), рассчитать уровни энергии и (в принципе) определить все экспериментально измеряемые характеристики, исследуемого объекта. Так и ядерное взаимодействие вместо введения сил удобно задавать с помощью потенциальной энергии. Если не учитывать довольно слабое электростатическое отталкивание, то сильное взаимодействие протона с протоном, протона с нейтроном и нейтрона с нейтроном будет в любом из этих случаев одним и тем же. Это взаимодействие называют нуклон - нуклонным. Потенциальную энергию взаимодействия двух нуклонов можно грубо описать кривой, показанной сплошной линией на Рис.1. На этом же рисунке для сравнения штриховой линией изображена энергия электростатического отталкивания двух протонов, которая равна k0e2/r.
Видно что, глубина потенциальной ямы, соответствующей ядерным силам, на порядок больше потенциальной энергии электростатического отталкивания двух протонов.
Помимо зарядовой независимости ядерные силы, как видно из рисунка, имеют короткодействующий характер. На расстоянии ~--3·10-15м энергия нуклон - нуклонного взаимодействия обращается в нуль.
Точная аналитическая зависимость энергии нуклон - нуклонного взаимодействия от расстояния между нуклонами до сих пор точно не известна. При расчетах используют полуэмпирический вид потенциала, который получают из опытов по рассеянию протонов и нейтронов на протонах.
В атомной физике единственным атомом, который легко рассчитывается, является атом водорода. В ядерной физике подобная система состоит из двух частиц: одного протона и одного нейтрона: это дейтрон. В дейтроне протон и нейтрон связаны друг с другом энергией 2,22 МэВ. Эта величина получена из измеренных значений энергий покоя свободных протона, нейтрона и дейтрона, которые равны соответственно 938,21; 939,50 и 1875,49 МэВ. (Напомним, что 1МэВ = 106 эВ, 1эВ - энергия, которую получает протон, пройдя разность потенциалов 1 В).
Энергия связи ядра определяется суммой масс отдельных (свободных) нуклонов за вычетом массы ядра. Для ядра AZX, имеющего Z протонов и A - Z нейтронов масса ядра
M(Z, A) = Z mp + (A - Z) mn - Eсв/c2. (1)
В случае дейтрона
Eсв = (mp + mn - md) c2 = 2,22МэВ.
Уровень энергии E = - 2,22МэВ, отвечающий связанному состоянию протона и нейтрона, показан на Рис.1 жирной горизонтальной линией.
В случае ядер, состоящих более чем из двух нуклонов, величину внутриядерного взаимодействия принято характеризовать удельной энергией связи, т.е. энергией связи, приходящейся на один нуклон.
Экспериментальная зависимость удельной энергии связи показана на Рис. 2.
Рис. 2
Если между нуклонами существует такое сильное взаимодействие, то, как получается, что большое количество нуклонов могут быть локализованы с высокой (но конечной!) плотностью? Это можно объяснить следующим образом:
Пусть первоначально имеется множество свободных нуклонов, и среднее расстояние между ними равно r. Будем мысленно их сближать, уменьшая r. Как только r cтанет меньше 2,5·10-15м, нуклоны почувствуют сильное притяжение своих соседей, и их энергия связи соответственно возрастет. С другой стороны, нуклоны, как уже отмечалось, имеют полуцелый спин (h/2p)/2, и как тождественные частицы обязаны подчиняться принципу Паули, который запрещает двум фермионам находится в одинаковых состояниях. Поэтому наряду с притяжением на еще меньших расстояниях должно возникнуть отталкивание, средняя кинетическая энергия нуклонов должна возрасти, а энергия связи снизится при уменьшении r. Нуклон-нуклонное притяжение оказывается как раз таким, чтобы обеспечить существование такого расстояния, при котором энергия связи достигает максимума. Если бы ядерные силы оказались только на 30% слабее, то влияние принципа Паули было бы преобладающим и ядра вообще не существовали бы.
Ядерные реакции
Первая ядерная реакция
42He + 147N --> 178C + 11H
была открыта в 1919 г. (Э. Резерфорд).
В другой реакции
42He + 94Be --> 126C + 10n,
исследованной Дж. Чедвиком в 1932 г., был впервые обнаружен нейтрон 10n. Именно открытие нейтрона положило начало современной ядерной физике и стало окончательным крушением электромагнитной картины мира, в которой предполагалось существование только трех фундаментальных частиц: электрона, протона и фотона.
После открытия нейтрона Д.Д. Иваненко и В. Гейзенберг выдвинули гипотезу о протонно - нейтронном строении ядра.
Одной из загадок нейтронов было то, что их не удавалось обнаружить в веществе в свободном состоянии. Впоследствии было выяснено, что причиной тому является их нестабильность. Каждый нейтрон вне ядра в течении нескольких минут самопроизвольно распадается на протон, электрон и электронное антинейтрино вследствие т.н. слабого взаимодействия.
Явление радиоактивности
Явление радиоактивности было открыто в 1896 году французским ученым Анри Беккерелем. В настоящее время оно широко используется в науке, технике, медицине, промышленности. Радиоактивные элементы естественного происхождения присутствуют повсюду в окружающей человека среде. В больших объемах образуются искусственные радионуклиды, главным образом в качестве побочного продукта на предприятиях оборонной промышленности и атомной энергетики. Попадая в окружающую среду, они оказывают воздействия на живые организмы, в чем и заключается их опасность. Для правильной оценки этой опасности необходимо четкое представление о масштабах загрязнения окружающей среды, о выгодах, которые приносят производства, основным или побочным продуктом которых являются радионуклиды, и потерях, связанных с отказом от этих производств, о реальных механизмах действия радиации, последствиях и существующих мерах защиты.
Радиоактивность - неустойчивость ядер некоторых атомов, проявляющаяся в их способности к самопроизвольным превращениям (распаду), сопровождающимся испусканием ионизирующего излучения или радиацией
Радиация, или ионизирующее излучение - это частицы и гамма-кванты, энергия которых достаточно велика, чтобы при воздействии на вещество создавать ионы разных знаков. Радиацию нельзя вызвать с помощью химических реакций.
В каких единицах измеряется радиоактивность?
Мерой радиоактивности служит активность. Измеряется в Беккерелях (Бк), что соответствует 1 распаду в секунду. Содержание активности в веществе часто оценивают на единицу веса вещества (Бк/кг) или объема (Бк/куб.м). Также встречается еще такая единица активности, как Кюри (Ки). Это - огромная величина: 1 Ки = 37000000000 Бк. Активность радиоактивного источника характеризует его мощность. Так, в источнике активностью 1 Кюри происходит 37000000000 распадов в секунду. 4 Как было сказано выше, при этих распадах источник испускает ионизирующее излучения. Мерой ионизационного воздействия этого излучения на вещество является экспозиционная доза. Часто измеряется в Рентгенах (Р). Поскольку 1 Рентген - довольно большая величина, на практике удобнее пользоваться миллионной (мкР) или тысячной (мР) долями Рентгена. Действие распространенных бытовых дозиметров основано на измерении ионизации за определенное время, то есть мощности экспозиционной дозы. Единица измерения мощности экспозиционной дозы - микроРентген/час. Мощность дозы, умноженная на время, называется дозой. Мощность дозы и доза соотносятся так же как скорость автомобиля и пройденное этим автомобилем расстояние (путь). Для оценки воздействия на организм человека используются понятия эквивалентная доза и мощность эквивалентной дозы. Измеряются, соответственно, в Зивертах (Зв) и Зивертах/час. В быту можно считать, что 1 Зиверт = 100 Рентген. Необходимо указывать на какой орган, часть или все тело пришлась данная доза. Можно показать, что упомянутый выше точечный источник активностью 1 Кюри (для определенности рассматриваем источник цезий-137) на расстоянии 1 метр от себя создает мощность экспозиционной дозы приблизительно 0,3 Рентгена/час, а на расстоянии 10 метров - приблизительно 0,003 Рентгена/час. Уменьшение мощности дозы с увеличением расстояния от источника происходит всегда и обусловлено законами распространения излучения.
Что вокруг нас радиоактивно?
Воздействие на человека тех или иных источников радиации поможет оценить следующая диаграмма (по данным А.Г.Зеленкова, 1990).
Ядерные реакции
Общие сведения.
Явление деления тяжелых атомных ядер на два осколка было открыто Ганом и Штрассманом в 1939 г. При изучении взаимодействия нейтронов различных энергий и ядер урана. Несколько позже, в 1940 г. Советские физики К.А.Петржак и Г.И. Флеров обнаружили самопроизвольное (спонтанное) деление ядер урана. При спонтанном деление и делении, вызванном нейронами, как правило, образуется асимметричные осколки, отношение масс которых примерно равно 3: 2.
При реакции деления выделяется очень большая энергия. Энергия деления высвобождается в виде кинетической энергии ядер-осколков, кинетической энергии испускаемых ядрами-осколками электронов, гамма-квантов, нейтрино, нейтронов.
Основная часть энергии деления приходится на энергию ядер-осколков, поскольку под действием кулоновских сил отталкивания они приобретают большую кинетическую энергию. Основная часть энергии деления выделяется в виде кинетической энергии ядер-осколков.
Замечательным и чрезвычайно важным свойством реакции деления является то, что в результате деления образуется несколько нейтронов. Это обстоятельство позволяет создать условия для поддержания стационарной или развивающейся во времени цепной реакции деления ядер. Действительно, если в среде, содержащей делящиеся ядра, один нейтрон вызывают реакцию деления, то образующиеся в результате реакции нейтроны могут с определенной вероятностью вызвать деление ядер, что может привести при соответствующих условиях к развитию неконтролируемого процесса деления. Число вторичных нейтронов не постоянно для всех тяжелых ядер и зависит как от энергии вызвавшего деление нейтрона, так и от свойств ядра-мишени. Среди нейтронов деления кроме так называемых мгновенных нейтронов, испускаемых за 10-15 с после процесса деления, есть также и запаздывающие нейтроны. Они испускаются в течении нескольких минут с постепенно убывающей интенсивность. Мгновенные нейтроны составляют более 99% полного числа нейтронов деления, а их энергия заключена в широком диапазоне: от тепловой энергии и до энергии приблизительно равной 10 МэВ.
Запаздывающие нейтроны испускаются возбужденными ядрами образующихся после бета-распада продуктов деления - ядер-предшественников. Поскольку испускание нуклонов возбужденным ядром происходит мгновенно, то во время испускания запаздывающего нейтрона после акта деления будет определяться постоянной распада ядра-предшественника.
Продукты деления.
В результате деления тяжелых ядер образуются, как правило, два ядра-осколка с различной массой. В среднем отношение масс легких и тяжелых осколков равно 2 : 3. Как правило, ядра-осколки имеют большой избыток нейтронов и поэтому неустойчивы относительно вета-распада. Массовые числа А продуктов деления меняются от 72 до 161, а атомные номера от 30 до 65. Вероятность симметричного деления на два осколка с приблизительно равными массами составляет всего 0,04%. Доля симметричного деления возрастает по мере увеличения энергии первичного нейтрона, вызывающего деление атомного ядра.
Взаимодействие нейтронов с атомными ядрами
Различные частицы (нейтроны, протоны, электроны, гамма-кванты и т.д.) могут взаимодействовать с атомными ядрами. Характер взаимодействия зависит от энергии частиц, их типа и свойств атомного ядра. Для оценки вероятности взаимодействия вводится величина, называемая микроскопическим сечением взаимодействия. Физический смысл ее состоит в следующем. Пусть пучок нейтронов интенсивностью No падает на мишень, состоящую из одного слоя ядер. Число ядер на единице поверхности равно М. Предположим, что при прохождении пучка через такой слой часть нейтронов поглотиться в нем и через слой прошло N`. Тогда вероятность взаимодействия одного нейтрона с одним атомным ядром:
=No-N`
NoM
Это и есть микроскопическое сечение, представляющее собой эффективную площадь поперечного сечения атомного ядра, попав в которое налетающая частица вызывает ядерную реакцию или испытывает рассеяние.
В процессе экспериментальных исследований энергетической зависимости сечения взаимодействия частиц и различных атомных ядер было обнаружено, что при определенных энергиях значения сечений резко возрастают, а при дальнейшем увеличении энергии снова уменьшаются. Это явление называется резонансом.
В практике реактостроения нейтроны по энергии принято делить на следующие группы: быстрые нейтроны с энергией 0,10 - 10 МэВ, тепловые нейтроны, находящиеся в тепловом равновесии с ядрами среды и имеющие энергию 0,005 - 0,2 эВ , и промежуточные (2 - 102 эВ) и надтепловые (0,2 - 2 эВ).
При взаимодействии нейтрона и ядер могут протекать следующие реакции: упругое рассеяние, неупругое рассеяние, радиационный захват, деление. Вероятность протекания определенной реакции характеризуется микроскопическими сечениями. В зависимости от энергии нейтрона сечения могут изменятся. Так, в области быстрых нейтронов сечение радиационного захвата примерно в 100 раз меньше сечения захвата тепловых нейтронов. Сечение упругого рассеяния, как правило, почти постоянное для энергии выше 1 эВ.
Наряду с микроскопическими сечениями на практике используются также макроскопические сечения, под которыми понимают вероятность взаимодействия частицы в единице объема вещества. Если в единице объема число ядер определенного типа есть N, то макроскопическое сечение = микроскопическое сечение =N. Как и микроскопическое, макроскопическое сечение также характеризует определенный тип ядерной реакции.
????????????????????
Ядерные реакторы.
При делении тяжелых ядер образуется несколько свободных нейтронов. Это позволяет организовать так называемую цепную реакцию деления, когда нейтроны, распространяясь в среде, содержащей тяжелые элементы, могут вызвать их деление с испусканием новых свободных нейтронов. Если среда такова, что число вновь рождающихся нейтронов увеличивается, то процесс деления лавинообразно нарастает. В случае, когда число нейтронов при последующих делениях уменьшается, цепная ядерная реакция затухает.
Для получения стационарной цепной ядерной реакции, очевидно, необходимо создать такие условия, чтобы каждое ядро, поглотившее нейтрон, при делении выделяло в среднем один нейтрон, идущий на деление второго тяжелого ядра.
Ядерным реактором называется устройство, в котором осуществляется и поддерживается управляемая цепная реакция деления некоторых тяжелых ядер.
Цепная ядерная реакция в реакторе может осуществляться только при определенном количестве делящихся ядер, которые могут делиться при любой энергии нейтронов. Из делящихся материалов важнейшим является изотоп 235U, доля которого в естественном уране составляет всего 0,714 %.
Хотя 238U и делится нейтронами, энергия которых превышает 1,2 МэВ, однако самоподдерживающаяся цепная реакция на быстрых нейтронах в естественном уране не возможна из-за высокой вероятности неупругого взаимодействия ядер 238U с быстрыми нейтронами. При этом энергия нейтронов становится ниже пороговой энергии деления ядер 238U.
Использование замедлителя приводит к уменьшению резонансного поглощения в 238U, так как нейтрон может пройти область резонансных энергий в результате столкновения с ядрами замедлителя и поглотиться ядрами 235U, 239Pu, 233U, сечение деления которых существенно увеличивается с уменьшением энергии нейтронов. В качестве замедлителей используют материалы с малым массовым числом и небольшим сечением поглощения (вода, графит, бериллий и др.).
Для характеристики цепной реакции деления используется величина, называемая коэффициентом размножения К. Это отношение числа нейтронов определенного поколения к числу нейтронов предыдущего поколения. Для стационарной цепной реакции деления К=1. Размножающаяся система (реактор), в которой К=1, называется критической. Если К>1, число нейтронов в системе увеличивается и она в этом случае называется надкритической. При К< 1 происходит уменьшение числа нейтронов и система называется подкритической. В стационарном состоянии реактора число вновь образующихся нейтронов равно числу нейтронов, покидающих реактор (нейтроны утечки) и поглощающихся в его пределах. В критическом реакторе присутствуют нейтроны всех энергий. Они образуют так называемый энергетический спектр нейтронов, который характеризует число нейтронов различных энергий в единице объема в любой точке реактора. Средняя энергия спектра нейтронов определяется долей замедлителя, делящихся ядер (ядра горючего) и других материалов, которые входят в состав активной зоны реактора. Если большая часть делений происходит при поглощении тепловых нейтронов, то такой реактор называется реактором на тепловых нейтронах. Энергия нейтронов в такой системе не превышает 0.2 эВ. Если большая часть делений в реакторе происходит при поглощении быстрых нейтронов, такой реактор называется реактором на быстрых нейтронах.
В активной зоне реактора на тепловых нейтронах наряду с ядерным топливом находится значительная масса замедлителя-вещества, отличающегося большим сечением рассеяния и малым сечением поглощения.
Активная зона реактора практически всегда, за исключением специальных реакторов, окружена отражателем, возвращающим часть нейронов в активную зону за счет многократного рассеяния.
В реакторах на быстрых нейронах активная зона окружена зонами воспроизводства. В них происходит накопление делящихся изотопов. Кроме того, зоны воспроизводства выполняют и функции отражателя.
В ядерном реакторе происходит накопления продуктов деления, которые называются шлаками. Наличие шлаков приводит к дополнительным потерям свободных нейтронов.
Ядерные реакторы в зависимости от взаимного размещения горючего и замедлителя подразделяются на гомогенные и гетерогенные. В гомогенном реакторе активная зона представляет собой однородную массу топлива, замедлителя и теплоносителя в виде раствора, смеси или расплава. Гетерогенным называется реактор, в котором топливо в виде блоков или тепловыделяющих сборок размещено в замедлителе, образуя в нем правильную геометрическую решетку.
В основе производства тепловой и электрической энергии лежит процесс сжигания ископаемых энергоресурсов - угля, нефти, газа. А в атомной энергетике - деление ядер атомов урана и плутония при поглощении нейтронов. Поэтому использование энергии атомного ядра, развитие атомной энергетики снимает остроту этой проблемы. Открытие деления тяжелых ядер при захвате нейтронов, сделавшее наш век атомным, прибавило к запасам энергетического ископаемого топлива существенный клад ядерного горючего. Запасы урана в земной коре оцениваются огромной цифрой 1014 тонн. Однако основная масса этого богатства находится в рассеянном состоянии - в гранитах, базальтах. В водах мирового океана количество урана достигает 4*109 тонн. Однако богатых месторождений урана, где добыча была бы недорога, известно сравнительно немного. Поэтому массу ресурсов урана, которую можно добыть при современной технологии и при умеренных ценах, оценивают в 108 тонн. Ежегодные потребности в уране составляют, по современным оценкам, 104 тонн естественного урана.
Важная проблема современного индустриального общества - обеспечение сохранности природы, чистоты воды, воздушного бассейна. Ученые обеспокоены по поводу "парникового эффекта", возникающего из-за выбросов углекислого газа при сжигании органического топлива, и соответствующего глобального потепления климата на нашей планете. Да и проблемы загазованности воздушного бассейна, "кислых" дождей, отравления рек приблизились во многих районах к критической черте.
Атомная энергетика не потребляет кислорода и имеет ничтожное количество выбросов при нормальной эксплуатации. Если атомная энергетика заменит обычную энергетику, то возможности возникновения "парника" с тяжелыми экологическими последствиями глобального потепления будут устранены.
Чрезвычайно важным обстоятельством является тот факт, что атомная энергетика доказала свою экономическую эффективность практически во всех районах земного шара. Кроме того, даже при большом масштабе энергопроизводства на АС атомная энергетика не создаст особых транспортных проблем, поскольку требует ничтожных транспортных расходов, что освобождает общества от бремени постоянных перевозок огромных количеств органического топлива.
«Нет» атомной энергии
История создания ядерного оружия.
1902 - 1903. Начало пути: А. Беккерель, Ф.Содди, Э. Резерфорд
Первые сигналы о том, что внутри атомов скрыты огромные запасы энергии, поступили как раз от того элемента, который впоследствии и подсказал способ ее извлечения. В самом конце XIX века Антуан Анри Беккерель, пытавшийся обнаружить рентгеновское излучение при флюоресценции солей урана, открыл явление радиоактивности - беккерелевы лучи. Открытие А. Беккереля заинтересовало многих: во Франции ими были, Мария и Пьер Кюри, Поль Виллар, в Англии - Эрнест Резерфорд и Фредерик Содди, в Германии и Австрии - Эгон Швейтлер, Стефен Майер, чуть позже - Отто Ган.
Но первыми до конца осознали, что попало им в руки, были все-таки Ф. Содди и Э. Резерфорд. И произошло это не позже 1902-1903 годов, потому что уже в 1903 году Ф. Содди написал: "Атомная энергия, по всей вероятности, обладает несравненно большей мощностью, чем молекулярная энергия, <...> и сознание этого факта должно заставить нас рассматривать планету, на которой мы живем, как склад взрывчатых веществ, обладающих невероятной взрывной силой". (Спустя пять лет Ф. Содди писал о возможности с помощью атомной энергии "превратить всю планету в цветущий сад", но это не имело никакого значения, главные слова уже были сказаны.)
Виды ядерных зарядов
Атомные заряды.
Действие атомного оружия основывается на реакции деления тяжелых ядер (уран-235, плутоний-239 и т.д.). Цепная реакция деления развивается не в любом количестве делящегося вещества, а лишь только в определенной для каждого вещества массе. Наименьшее количество делящегося вещества, в котором возможна саморазвивающаяся цепная ядерная реакция, называют критической массой. Уменьшение критической массы будет наблюдаться при увеличении плотности вещества.
Делящееся вещество в атомном заряде находится в подкритическом состоянии. По принципу его перевода в надкритическое состояние атомные заряды делятся на пушечные и имплозивного типа. В зарядах пушечного типа две и более частей делящегося вещества, масса каждой из которых меньше критической, быстро соединяются друг с другом в надкритическую массу в результате взрыва обычного взрывчатого вещества (выстреливания одной части в другую). При создании зарядов по такой схеме трудно обеспечить высокую надкритичность, вследствие чего его коэффициент полезного действия невелик. Достоинством схемы пушечного типа является возможность создания зарядов малого диаметра и высокой стойкости к действию механических нагрузок, что позволяет использовать их в артиллерийских снарядах и минах.
В зарядах имплозивного типа делящееся вещество, имеющее при нормальной плотности массу меньше критической, переводится в надкритическое состояние повышением его плотности в результате обжатия с помощью взрыва обычного взрывчатого вещества. В таких зарядах представляется возможность получить высокую надкритичность и, следовательно , высокий коэффициент полезного использования делящегося вещества.
Термоядерные заряды.
Действие термоядерного оружия основывается на реакции синтеза ядер легких элементов. Для возникновения цепной термоядерной реакции необходима очень высокая (порядка нескольких миллионов градусов) температура, которая достигается взрывом обычного атомного заряда . В качестве термоядерного горючего используется обычно дейтрид лития-6 (твердое вещество, представляющее собой соединение лития-6 и дейтерия).
Нейтронные заряды.
Нейтронный заряд представляет собой особый вид термоядерного заряда, в котором резко увеличен выход нейтронов. Для боевой части ракеты "Лэнс" на долю реакции синтеза приходится порядка 70% освобождающейся энергии.
Чистый" заряд.
Чистый заряд-это ядерный заряд, при взрыве которого выход долгоживущих радиоактивных изотопов существенно снижен.
Мощность ядерных боеприпасов
Ядерное оружие обладает колоссальной мощностью. При делении урана массой порядка килограмма освобождается такое же количество энергии, как при взрыве тротила массой около 20 тысяч тонн. Термоядерные реакции синтеза являются еще более энергоемкими. Мощность взрыва ядерных боеприпасов принято измерять в единицах тротилового эквивалента. Тротиловый эквивалент - это масса тринитротолуола, которая обеспечила бы взрыв, по мощности эквивалентный взрыву данного ядерного боеприпаса. Обычно он измеряется в килотоннах (кТ) или в мегатоннах (МгТ).
В зависимости от мощности ядерные боеприпасы делят на калибры:
-сверхмалый (менее 1кТ)
-малый (от 1 до 10 кТ)
-средний (от 10 до 100 кТ)
-крупный (от 100 кТ до 1 МгТ)
-сверхкрупный (свыше 1 МгТ)
Термоядерными зарядами комплектуются боеприпасы сверхкрупного, крупного и среднего калибров; ядерными - сверхмалого, малого и среднего калибров, Нейтронными - сверхмалого и малого калибров.
Поражающие факторы ядерного взрыва.
Поражающее действие ядерного взрыва определяется механическим воздействием ударной волны, тепло-вым воздействием светового излуче-ния, радиационным воздействием про-никающей радиации и радиоактивного заражения. Для некоторых элементов объектов поражающим фактором явля-ется электромагнитное излучение (электромагнитный импульс) ядерного взрыва.
Распределение энергии между по-ражающими факторами ядерного взрыва зависит от вида взрыва и ус-ловий, в которых он происходит. При взрыве в атмосфере примерно 50 % энергии взрыва расходуется на обра-зование ударной волны, 30 -- 40% -- на световое излучение, до 5 % -- на проникающую радиацию и электромаг-нитный импульс и до 15 % --на радио-активное заражение.
Для нейтронного взрыва характер-ны те же поражающие факторы, одна-ко несколько по-иному распределяется энергия взрыва: 8 -- 10% -- на образо-вание ударной волны, 5 -- 8 % -- на световое излучение и около 85 % рас-ходуется на образование нейтронного и гамма-излучений (проникающей ра-диации).
Действие поражающих факторов ядерного взрыва на людей и элементы объектов происходит не одновременно и различается по длительности воз-действия, характеру и масштабам по-ражения.
Ядерный взрыв способен мгновенно уничтожить или вывести из строя незащищенных людей, открыто стоящую технику, сооружения и различные материальные средства. Основными поражающими факторами ядерного взрыва являются:
-ударная волна
-световое излучение
-проникающая радиация
-радиоактивное заражение местности
-электромагнитный импульс
Рассмотрим их.
Ударная волна
В большинстве случаев является основным поражающим фактором ядерного взрыва. По своей природе она подобна ударной волне обычного взрыва, но действует более продолжительное время и обладает гораздо большей разрушительной силой. Ударная волна ядерного взрыва может на значительном расстоянии от центра взрыва наносить поражения людям, разрушать сооружения и повреждать боевую технику.
Ударная волна представляет собой область сильного сжатия воздуха, распространяющуюся с большой скоростью во все стороны от центра взрыва. Скорость распространения ее зависит от давления воздуха во фронте ударной волны; вблизи центра взрыва она в несколько раз превышает скорость звука, но с увеличением расстояния от места взрыва резко падает.
За первые 2 сек ударная волна проходит около 1000 м, за 5 сек - 2000 м, за 8 сек - около 3000 м.
Это служит обоснованием норматива N5 ЗОМП "Действия при вспышке ядерного взрыва": отлично - 2 сек, хорошо - 3 сек, удовлетврительно-4 сек.
Крайне тяжелые контузии и травмы у людей возникают при избыточном давлении более 100 кПа (1 кгс/см2). Отмечаются разрывы внутренних органов, переломы костей, внутрен-ние кровотечения, сотрясение мозга, длительная потеря сознания. Разры-вы наблюдаются в органах, содержа-щих большое количество крови (пе-чень, селезенка, почки), наполненных газом (легкие, кишечник) или имею-щие полости, наполненные жидкостью (желудочки головного мозга, мочевой и желчный пузыри). Эти травмы мо-гут привести к смертельному исходу.
Тяжелые контузии и травмы воз-можны при избыточных давлениях от 60 до 100 кПа (от 0,6 до 1,0 кгс/см2). Они характеризуются сильной конту-зией всего организма, потерей созна-ния, переломами костей, кровотечени-ем из носа и ушей; возможны повреж-дения внутренних органов и внутрен-ние кровотечения.
Поражения средней тяжести возни-кают при избыточном давлении 40 -- 60 кПа (0,4--0,6 кгс/см2). При этом могут быть вывихи конечностей, кон-тузия головного мозга, повреждение органов слуха, кровотечение из носа и ушей.
Легкие поражения наступают при избыточном давлении 20 -- 40 кПа (0,2--0,4 кгс/см2). Они выражаются в скоропроходящих нарушениях функ-ций организма (звон в ушах, голово-кружение, головная боль). Возможны вывихи, ушибы.
Избыточные давления во фронте ударной волны 10 кПа (0,1 кгс/см2) и менее для людей и животных, распо-ложенных вне укрытий, считаются безопасными.
Радиус поражения обломками зда-ний, особенно осколками стекол, раз-рушающихся при избыточном давле-нии более 2 кПа (0,02 кгс/см2) может превышать радиус непосредственного поражения ударной волной.
Гарантированная защита людей от ударной волны обеспечивается при укрытии их в убежищах. При отсутст-вии убежищ используются противорадиационные укрытия, подземные вы-работки, естественные укрытия и рель-еф местности.
Механическое воздейст-вие ударной волны. Характер разрушения элементов объекта (пред-метов) зависит от нагрузки, создавае-мой ударной волной, и реакции пред-мета на действие этой нагрузки.
Общую оценку разрушений, вы-званных ударной волной ядерного взрыва, принято давать по степени тя-жести этих разрушений. Для большин-ства элементов объекта, как правило, рассматриваются три степени--сла-бое, среднее и сильное разрушение. Для жилых и промышленных зданий берется обычно четвертая степень-- полное разрушение. При слабом раз-рушении, как правило, объект не вы-ходит из строя; его можно эксплуати-ровать немедленно или после незна-чительного (текущего) ремонта. Средним разрушением обычно называют разрушение главным образом второ-степенных элементов объекта. Основ-ные элементы могут деформироваться и повреждаться частично. Восстанов-ление возможно силами предприятия путем проведения среднего или капи-тального ремонта. Сильное разруше-ние объекта характеризуется сильной деформацией или разрушением его основных элементов, в результате чего объект выходит из строя и не может быть восстановлен.
Применительно к гражданским и промышленным зданиям степени разрушения характеризуются следующим состоянием конструкции.
Слабое разрушение. Разрушаются оконные и дверные заполнения и лег-кие перегородки, частично разрушает-ся кровля, возможны трещины в сте-нах верхних этажей. Подвалы и ниж-ние этажи сохраняются полностью. Находиться в здании безопасно, и оно может эксплуатироваться после про-ведения текущего ремонта.
Среднее разрушение проявляется в разрушении крыш и встроенных эле-ментов-- вутренних перегородок, окон, а также в возникновении трещин в стенах, обрушении отдельных участ-ков чердачных перекрытий и стен верх-них этажей. Подвалы сохраняются. После расчистки и ремонта может быть использована часть помещений нижних этажей. Восстановление зда-ний возможно при проведении капи-тального ремонта.
Сильное разрушение характеризу-ется разрушением несущих конструк-ций и перекрытий верхних этажей, об-разованием трещин в стенах и дефор-мацией перекрытий нижних этажей. Использование помещений становится невозможным, а ремонт и восстановле-ние чаще всего нецелесообразным.
Полное разрушение. Разрушаются все основные элементы здания, вклю-чая и несущие конструкции. Использо-вать здания невозможно. Подвальные помещения при сильных и полных раз-рушениях могут сохраняться и после разбора завалов частично использо-ваться.
Наибольшие разрушения получают наземные здания, рассчитанные на собственный вес и вертикальные на-грузки, более устойчивы заглубленные и подземные сооружения. Здания с ме-таллическим каркасом средние разру-шения получают при 20 -- 40 кПа, а полные -- при 60--80 кПа, здания кир-пичные -- при 10 -- 20 и 30 -- 40, здания деревянные -- при 10 и 20 кПа соответ-ственно. Здания с большим количест-вом проемов более устойчивы, так как в первую очередь разрушаются запол-нения проемов, а несущие конструкции при этом испытывают меньшую на-грузку. Разрушение остекления в зда-ниях происходит при 2--7 кПа.
Объем разрушений в городе зави-сит от характера строений, их этаж-ности и плотности застройки. При плотности застройки 50 % давление ударной волны на здания может быть меньше (на 20 -- 40 %), чем на здания, стоящие на открытой местности, на таком же расстоянии от центра взры-ва. При плотности застройки менее 30 % экранирующее действие зда-ний незначительно и не имеет практи-ческого значения.
Энергетическое, промыш-ленное и коммунальное обо-рудование может иметь следую-щие степени разрушений.
Слабые разрушения: деформации трубопроводов, их повреждения на стыках; повреждения и разрушении контрольно-измерительной аппарату-ры; повреждение верхних частей ко-лодцев на водо-, тепло- и газовых се-тях; отдельные разрывы на линии электропередач (ЛЭП); повреждения станков, требующих замены электро-проводки, приборов и других повреж-денных частей.
Средние разрушения: отдельные разрывы и деформации трубопрово-дов, кабелей; деформации и повреж-дения отдельных опор ЛЭП; деформа-ция и смещение на опорах цистерн, разрушение их выше уровня жидкости;