Показано, что традиционное электромагнитное поле с векторными компонентами электрической и магнитной напряженности, описываемое уравнениями Максвелла классической электродинамики, является лишь одной из равноправных составляющих векторного четырехкомпонентного единого электродинамического поля, реализующего своим существованием функционально связанные между собой и другие составляющие его поля: поле электромагнитного векторного потенциала, состоящего из электрической и магнитной векторных компонент, электрическое поле с компонентами электрической напряженности и электрического векторного потенциала, магнитное поле с компонентами магнитной напряженности и магнитного векторного потенциала. Проведен анализ характеристик распространения указанных составляющих единого электродинамического поля в виде плоских волн в однородных изотропных материальных средах.
В настоящее время установлено [1, 2], что в отношении полноты охвата наблюдаемых в Природе явлений электромагнетизма, наряду с системой уравнений электродинамики Максвелла электромагнитного (ЭМ) поля с компонентами электрической и магнитной напряженности:
(a) , (b) , (1)
(c) , (d) ,
существуют и другие системы полевых уравнений, концептуально необходимые для анализа и адекватного физико-математического моделирования электродинамических процессов в материальных средах. Здесь и -электрическая и магнитная постоянные, , и- удельная электропроводность и относительные диэлектрическая и магнитная проницаемости среды, соответственно, - объемная плотность стороннего электрического заряда; - постоянная времени релаксации заряда в среде за счет электропроводности.
Уравнения в этих других системах рассматривают такие области пространства, где присутствуют либо только поле ЭМ векторного потенциала с электрической и магнитной компонентами:
(a) , (b) , (2)
(c) , (d) ;
либо электрическое поле с компонентами и :
(a) , (b) , (3)
(c) , (d) ;
либо, наконец, магнитное поле с компонентами и :
(a) , (b) , (4)
(c) , (d) .
Основная и отличительная особенность уравнений систем (2) - (4) в сравнении с традиционными уравнениями Максвелла ЭМ поля (1) с физической точки зрения состоит в том, что именно они, используя представления о поле ЭМ векторного потенциала, способны последовательно описать многообразие электродинамических явлений нетепловой природы в материальных средах, определяемых электрической или магнитной поляризацией и передачей среде момента ЭМ импульса, в частности, в процессе электрической проводимости [3] .
Принципиально и существенно то, что все эти системы электродинамических уравнений, в том числе, и система (1) для локально электронейтральных сред (), являются непосредственным следствием фундаментальных исходных соотношенийфункциональнойпервичной взаимосвязи ЭМ поля и поля ЭМ векторного потенциала [1, 2]
(a) , (b) , (5)
(c) , (d) .
Очевидно, что данная система соотношений может служить основой для интерпретации физического смысла поля ЭМ векторного потенциала [4], выяснения его роли и места в явлениях электромагнетизма. Однако самое главное и интересное в них то, что они представляют собой систему дифференциальных уравнений, описывающих свойства необычного вихревого векторного поля, состоящего их четырех полевых векторных компонент , , и, которое условно назовем единое электродинамическое поле.
Объективность существования указанного единого поляоднозначно и убедительно иллюстрируется указанными системами уравнений (1) - (4) и получаемыми из них соотношениями баланса:
для потока ЭМ энергииизуравнений (1)
, (6)
для потока момента ЭМ импульса из уравнений (2)
(7)
для потока электрической энергии из уравнений (3)
,(8)
и для потока магнитной энергии из уравнений (4)
.(9)
Как видим, соотношения (5) действительно следует считать уравнениями единого электродинамическогополя, базирующегося на исходной своей составляющей - поле ЭМ векторного потенциала, состоящего из двух взаимно ортогональных электрической и магнитной векторных полевых компонент. При этом поле ЭМ векторного потенциала своим существованием реализует функционально связанные с ним другие составляющие единого поля: ЭМ поле с векторными компонентами и , электрическое поле с компонентами и , магнитное поле с компонентами и . Отмеченная здесь структура и взаимосвязь составляющих единого электродинамического поля сохраняется и в статической асимптотике. Логика построения систем полевых уравнений для стационарных составляющих единого поля и анализ физического содержания таких уравнений изложены в работе [5].
Таким образом, имеем очевидное обобщение и серьезное развитие представлений классической электродинамики. В частности, показано, что в Природе, так же как и в случае ЭМ поля, не может быть электрического, магнитного или другой составляющей единого электродинамическогополя с одной полевой компонентой. Структура обсуждаемых составляющих единого электродинамического поля из двух векторных взаимно ортогональных полевых компонент - это объективно необходимый способ их реального существования, принципиальная и единственная возможность распространения конкретной составляющей в виде потока соответствующей физической величины, в случае динамических полей - посредством поперечных волн.
Форма представленных систем уравнений (1) - (4) говорит о существовании волновых уравнений как для компонент ЭМ поля и , так и для компонент поля ЭМ векторного потенциала и . В этом можно убедиться, взяв, как обычно, ротор от одного из роторных уравнений любой системы, и после чего подставить в него другое роторное уравнение той же системы. В качестве иллюстрации получим, например, для системы (2) волновое уравнение относительно :
.
Здесь, согласно (2c), , - оператор Лапласа, а - фазовая скорость поля волны в отсутствие поглощения. Следовательно, указанные волновые уравнения описывают волны конкретной составляющей единого электродинамического поля в виде одной из парных комбинаций этих четырех волновых уравнений. В итоге возникает физически очевидный вопрос, что это за волны, и каковы характеристики распространения таких волн?
Ввиду того, что уравнения систем (1) и (2) математически структурно тождественны, а волновые решения уравнений (1) широко известны [6], то далее анализ характеристик распространения составляющих единого электродинамическогополя, например, в виде плоских волн в однородных изотропных материальных средах проведем, прежде всего, для уравнений (3) электрического поля и уравнений (4) магнитного поля. Их необычные структуры между собой также математически тождественны, а волновые решения систем этих уравнений, как будет показано ниже, физически весьма нетривиальны.
Итак, рассмотрим волновой пакет плоской линейно поляризованной электрической волны, распространяющейся вдоль оси0Xс компонентами и для системы (3) либо магнитной волны с компонентами и для системы (4), которые представим комплексными спектральными интегралами. Здесь, согласно соотношениям (5с) и (5d), учтена функциональная взаимосвязь обсуждаемых волн в виде единого процесса и взаимная коллинеарность векторов и (эти векторы антипараллельны), и компонент полей. Тогда, например, для уравнений электрического поля указанные интегралы имеют вид:
и ,
где и - комплексные амплитуды.
Подставляя их в уравнения (3a) и (3c), приходим к соотношениям и . Соответствующая подстановка интегралов и в уравнения (4а) и (4c) дает и . В итоге для обеих систем получаем общее для них выражение:
В конкретном случае среды идеального диэлектрика () с учетом формулы из следует для обеих систем обычное дисперсионное соотношение [6], описывающее однородные плоские волны электрического или магнитного полей. При этом связь комплексных амплитуд компонент указанных волновых полей имеет специфический вид:
в системе (3) и
в системе (4),
то есть при распространении в диэлектрической среде компоненты поля сдвинуты между собой по фазе на ?/2. Специфика здесь в том, что характер поведения компонент поля такой волны в любой точке пространства аналогичен кинематическим параметрам движения (смещение и скорость) классической частицы в точке устойчивого равновесия поля потенциальных сил. Конечно, математически данный результат очевидно тривиален, поскольку компоненты ЭМ поля и поля ЭМ векторного потенциала связаны между собой посредством производной по времени (см. соотношения (5c) и (5d)). Однако с физической точки зрения этот результат весьма нетривиален и, безусловно, интересен и наводит на размышления.
Для проводящей среды () в асимптотике металлов () дисперсионное соотношение систем уравнений (3) и (4) имеет обычный в таком случае вид , где [6]. Тогда, например, для уравнений (3) связь комплексных амплитуд компонент иметь вид и волновые решения запишутся в виде экспоненциально затухающих в пространстве плоских волн со сдвигом начальной фазы между компонентами поля на ?/4:
, (10)
.
Для уравнений системы (4) их волновые решения математически тождественны (10) с заменой на и на при следующем выражении связи комплексных амплитуд:
.
Рассмотрим соответствующие рассуждения для аналогичного представленному выше пакету плоской волны теперь уже для ЭМ поля с компонентами и в системе (1), которые в итоге дают соотношения и . Подобным образом для волны поля ЭМ векторного потенциала с компонентами и в системе (2) имеем соответственно и . Таким образом, для этих двух систем электродинамических уравнений снова получаем стандартное выражение:
В этом случае для диэлектрической среды () дисперсионное соотношение для волновых решений уравнений систем (1) и (2) будет , что описывает обычный режим волнового распространения компонент ЭМ поля [6] и компонент поля ЭМ векторного потенциала в виде однородных плоских волн. При этом связь комплексных амплитуд волновых решений уравнений систем (1) и (2) будет иметь стандартный вид:
и ,
где сами волновые решения описывают указанные волны, компоненты поля которых синфазно распространяются в пространстве. При этом, согласно соотношениям (5c) и (5d), волны ЭМ поля отстают по фазе на ?/2 от волн ЭМ векторного потенциала, что и приводит к необычному, отмеченному выше поведению компонент полей электрической и магнитной волн.
Для проводящей среды () в асимптотике металлов () рассуждения полностью аналогичны вышеприведенным. Здесь связи комплексных амплитуд для волновых решений уравнений систем (1) и (2) запишутся в виде:
и .
Как видим, распространение волн всех четырех составляющих единого электродинамического поля в асимптотике металлов подчиняется теоретически хорошо изученному закону для плоских волн ЭМ поля в металлах [6].
Подводя окончательный итог проведенным исследованиям, следует отметить, что именно уравнения системы (2) поля ЭМ векторного потенциала описывают волны, переносящие в пространстве поток момента ЭМ импульса, которые еще со времен Пойнтинга безуспешно пытаются описать с помощью уравнений ЭМ поля (1) (см., например, результаты анализа в статье [7]). При этом сами по себе волны ЭМ векторного потенциала принципиально не способны переносить энергию, поскольку в уравнениях (2) поля и отсутствуют. В этой связи укажем на пионерские работы [8], где обсуждаются неэнергетическое (информационное) взаимодействие поля векторного потенциала со средой при передаче в ней таких волн и способ их детектирования посредством эффекта, аналогичного эффекту Ааронова-Бома. Однако, как показано в настоящей работе, распространение волн ЭМ векторного потенциала в принципе невозможно без присутствия их сопровождающих волн ЭМ поля (см. соотношения (5)) и соответственно наоборот.
Обобщая полученные результаты, приходим к выводу о том, что указанные выше составляющие единого поля, распространяющиеся в свободном пространстве посредством поперечных волн, существуют совместно и одновременно, в неразрывном функциональном единстве. Следовательно, с общей точки зрения совокупность полей, определяемых соотношением (5), действительно являетсячетырехкомпонентным векторнымэлектродинамическим полем, распространяющимся в пространстве в виде единого волнового процесса, а потому с концептуальной точки зрения разделение единого электродинамического поля на составляющие его поля в определенной мере условно. Однако с позиций общепринятых физических представлений и реальной практики аналитического описания явлений Природы разделение указанного единого поля на двухкомпонентные составляющиев виде электрического, магнитного, электромагнитного и ЭМ векторного потенциала полей однозначно необходимо и, безусловно, удобно, поскольку диктуется объективным существованием конкретных электромагнитных явлений и процессов, реализуемых посредством рассматриваемых здесь полей.
Литература:
1. Сидоренков В.В. // Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2006. № 1. С. 28-37.
2. Сидоренков В.В. // Труды XX Международной школы-семинара «Новые магнитные материалы микроэлектроники». М.: МГУ, 2006. С. 123-125; // Материалы VII Международной конференции «Действие электромагнитных полей на пластичность и прочность материалов». Ч. 1. Воронеж: ВГТУ, 2007. С. 93-104; // Материалы IX Международной конференции «Физика в системе современного образования». Санкт-Петербург: РГПУ, 2007. Т. 1. Секция “Профессиональное физическое образование”. С. 127-129.
3. Сидоренков В.В. // Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2005. № 2. С. 35-46.