Основные закономерности сенсибилизированной фосфоресценции в твёрдых растворах органических соединений
II. Объекты исследования и техника эксперимента.
2.1. Объекты исследования.
Важнейшим источником информации о строении и свойствах молекул и твердых тел являются их оптические спектры [81-83]. Для решения поставленных задач особый интерес представляют электронные спектры, поскольку именно в них наиболее отчетливо проявляется связь оптических свойств молекулы (или кристалла) с химическими, фотофизическими и фотохимическими свойствами. Но наиболее важным для нас является то, что электронные спектры оказываются наиболее чувствительными к различного рода внутри- и межмолекулярным взаимодействиям и служат ценным средством исследования взаимодействия молекул между собой и с окружением [84-87]. Поэтому метод оптической спектроскопии был выбран в качестве одного из основных методов исследования.
В экспериментальных исследованиях триплетных молекул важное место, наряду со спектральными, занимают кинетические методы [1,2], то есть изучение процессов заселения и распада возбужденных состояний. Определенные из кинетических экспериментов параметры являются характеристиками, как самих молекул, так и их взаимодействия между собой и с матрицей, в случае примесных центров. Особенно важным является то, что параметры кинетики (время накопления и время дезактивации возбужденных состояний), определяются константами скоростей соответствующих переходов и, следовательно, позволяют извлечь информацию, о путях дезактивации триплетно возбужденных молекул. Этим обусловлена необходимость использования кинетических методов для установления и изучения механизмов дезактивации триплетных состояний органических молекул в твердых матрицах при их сенсибилизированном возбуждении.
В начале проведения эксперимента необходимо было определиться с объектами исследования, а именно с выбором веществ (молекулы донорно-акцепторной пары), которые должны удовлетворять следующим требованиям [16]:
1. Триплетный уровень молекул донора энергии должен быть расположен выше триплетного уровня молекул акцептора (закон сохранения энергии).
2. Для осуществления избирательного возбуждения только молекул донора энергии их флуоресцентный уровень должен быть ниже соответствующего уровня молекул акцептора.
При выполнении этих условий синглет-синглетный перенос энергии невозможен из-за неблагоприятного расположения энергетических уровней, а триплет-триплетный перенос наблюдается, если молекулы находятся в радиусе обменных взаимодействий.
Время затухания всех молекул акцепторов в замороженных растворах при 77 К составляет несколько секунд, что на два порядка больше времени затухания фосфоресценции доноров. Благодаря этому, после прекращения возбуждения уже спустя 0,1 секунды свечение полностью определяется фосфоресценцией акцептора.
Из этих соображений в качестве донора был взят дибромдифенилоксид, а так же для сравнения ранее изученный бензофенон, квантовый выход триплетных состояний которого близок к единице [62]. В качестве акцептора - аценафтен.
Аценафтен. Спектры флуоресценции и фосфоресценции аценафтена в н.-парафинах изучены достаточно подробно при различных концентрациях примеси Мамедовым Х. И. [68] и Dekkers J. J. [69]. Как и для остальных рассматриваемых соединений вид спектра люминесценции аценафтена зависит от подбора растворителя и концентрации примеси.
Наиболее удобным растворителем для аценафтена является н.-пентан, в котором спектр люминесценции в широком диапазоне конценцтраций (10-5-10-2 М) является квазилинейчатым [69]. При дальнейшем увеличении длины цепочки растворителя для малых концентраций спектр преобразуется в диффузные полосы. Так, в н.-гексане такой предельной концентрацией является 10-5 М , в н.-гептане -10-4 М, а в н.-октане квазилиний не наблюдается вообще. Представляет интерес уменьшение интенсивности свечения в последнем растворителе приблизительно на порядок при увеличении концентрации от 10-4 М до 10-2 М. Максимум диффузной полосы при этом немного смещается в коротковолновую область, а в длинноволновой области, отстоящей более чем на 1000 см-1, появляется широкое диффузное свечение, принадлежащее кристаллическому аценафтену.
При исследовании концентрационной зависимости спектров фосфоресценции аценафтена в матрицах н.-гексана при 77 К [70] наблюдалось три типа молекулярных спектров. Для концентраций раствора от 10-2 М до10-4 М наблюдался квазилинейчатый спектр. Для концентраций раствора, меньших чем 10-3 М, в спектре с коротковолновой стороны от квазилиний наблюдались широкие молекулярные полосы, смещенные на 50 см-1 и подобные полосам в спектре флуоресценции при тех же концентрациях. В узком интервале концентраций в области 10-1 М наряду с квазилиниями появились полосы, смещенные в длинноволновую область спектра относительно квазилиний на 200 см-1. На основании результатов температурной зависимости спектров фосфоресценции аценафтена авторами выдвинуто предположение, что за первый тип центров отвечают молекулы, внедренные в кристаллы, за второй - одиночные молекулы аценафтена, вытесненные на поверхность. Третий тип обусловлен свечением центров, внедренных в кристаллы н.-гексана, однако большая ширина и их смещение, по-видимому, связаны с неоднородным уширением и увеличением электрон-фононного взаимодействия из-за высоких концентраций.
В работе [13] был исследован спектр и кинетика сенсибилизированной фосфоресценции аценафтена в кристаллическом бензофеноне при переносе энергии от основы к примеси. Работа была выполнена с целью исключить из рассмотрения данный тип центров (микрокристаллы донора с внедренными в них молекулами акцептора) при условиях создания больших концентраций примеси (10-1 М). Как показал проведенный анализ, максимум 0-0 полосы сенсибилизированной фосфоресценции смещен на 120 см-1 в длинноволновую область по отношению к максимуму этой же полосы в н.-гексане. Полуширина 0-0 полосы сенсибилизированной фосфоресценции аценафтена в кристаллическом бензофеноне составляет около 240 см-1. Среднее значение времени затухания для интегральной ( без разложения в спектр) интенсивности составляет 2.40 с, что заметно отличается от среднего времени затухания сенсибилизированной фосфоресценции аценафтена в н.-гексане.
Достоверные тонкоструктурные спектры аценафтена в основном и возбужденном электронных состояниях, не искаженные влиянием на молекулы окружающей среды, получены в [71] при охлаждении в сверхзвуковой струе.
РастворителиН.-парафиновые растворители при быстром замораживании кристаллизуются и представляют собой поликристаллическую снегообразную массу. В процессе кристаллизации молекулы активатора могут внедряться в кристаллики растворителя, либо вытесняться в свободное пространство между ними или различного рода дефекты [61]. В «неудобных» растворителях молекулы примеси вытесняются из кристаллов практически полностью. Поэтому локальная концентрация примеси может быть намного больше, чем средняя концентрация ее в стеклообразных растворах при тех же условиях. И это дает нам возможность исследовать особенности переноса энергии при меньших расстояниях между молекулами в донорно-акцепторной паре, а также становится более доступным исследование механизмов концентрационного тушения триплетных состояний. По-видимому, в замороженных н.-парафиновых растворах донорно-акцепторных смесей существует два процесса, влияющих на концентрацию триплетных молекул акцептора энергии, а следовательно и на интенсивность сенсибилизированной фосфоресценции.
Первый процесс - тушение триплетных состояний молекул донора акцептором энергии, приводит к падению интенсивности сенсибилизированной фосфоресценции при повышении температуры и сопровождается падением . Падение интенсивности сенсибилизированной фосфоресценции в результате этого процесса происходит во всём исследованном интервале температур, в том числе и в аномальной области 2. Этот процесс практически не зависит от концентрации молекул примеси в растворе.
Второй процесс ведет к увеличению числа триплетных молекул. Прирост числа триплетных молекул акцептора энергии в результате этого процесса зависит как от концентрации раствора, так и от температуры.
Исходя из всего этого в качестве растворителя для решения поставленной задачи был выбран н.-октан, точка плавления которого 216К.
2.2. Техника эксперимента.
Основными экспериментами для решения поставленной задачи являлись изучение кинетики накопления и распада триплетных молекул акцептора и донора энергии, изучение спектров обычной и сенсибилизированной фосфоресценции, а также влияние на них температуры.
Экспериментальные исследования были выполнены на установке на базе спектрометра ДФС-12 с дифракционной решёткой 600 штр./мм и линейной дисперсией 5 /мм, блок схема которой приведена на рис. 2.1. Она позволяла получать и исследовать спектры поглощения и люминесценции, кривые разгорания и затухания фосфоресценции, а также зависимости люминесцентных характеристик изучаемых объектов от температуры.
Изучаемый раствор необходимой концентрации помещался в цилиндрическую кварцевую кювету. Исследуемый раствор охлаждался путём быстрого погружения в кварцевый прозрачный сосуд Дьюара с кипящим азотом. Такой способ охлаждения растворов можно назвать быстрым замораживанием в отличие от «медленного» замораживания, которое осуществлялось в парах азота. В последнем случае кристаллизация раствора происходила за 5-10 мин.
Молекулы донора энергии возбуждались светом ртутной лампы ПРК-2 с фильтром 365 нм. Молекулы, используемые в качестве акцепторов энергии, излучение с данной длиной волны не поглощают. При исследовании обычной фосфоресценции молекул акцептора (аценафтен), последние возбуждались излучением ПРК-2 с фильтром 313 нм.
Градуировка спектрометра производилась по линиям излучения ртутной лампы низкого давления. Ширина входной и выходной щелей монохроматора при записи спектров фосфоресценции была не более 1 мм.
Ошибка в определении максимума 0-0 полосы в спектре сенсибилизированной фосфоресценции не превышала 5 .
При изучении кинетики сенсибилизированной фосфоресценции для отделения её от фосфоресценции донора использовались электромеханические затворы, управляемые с помощью электронных реле времени. Время срабатывания затворов не превышало 5 мс. Задержка во времени между началом регистрации сенсибилизированной фосфоресценции и прекращением возбуждения донора изменялась от 0,1 до 30 с.
Регистрирующая часть установки включала в себя двухкоординатный графопостроитель Н-307 при записи спектров излучения и кинетики фосфоресценции молекул акцептора. При исследовании кинетики фосфоресценции молекул донора двухкоординатный графопостроитель заменялся на универсальный запоминающий осциллограф С8-13. Для согласования входного сопротивления самописца и выходного сопротивления фотоэлектронного умножителя использовался катодный повторитель, постоянную времени которого можно было изменять от 0,01 до 1,0 с. Линейность работы усилителя постоянного тока проверялась при подаче на ФЭУ светового потока регулируемого изменением входной щели монохроматора. Механическая постоянная времени графопостроителя не превышала 0,03 с.
Кинетические кривые, полученные с помощью графопостроителя или осциллографа перестраивались в полулогарифмическом масштабе, из которого и определялось время разгорания или время затухания фосфоресценции.
Величина погрешности при определении в экспериментах обуславливалась флуктуациями фототока, нелинейностью усилителя, погрешностью блока временной развёртки и механической постоянной самописца. Три последних источника погрешностей по данным многократных проверок могли дать в сумме систематическую ошибку не более 1,0 %. Для уменьшения влияния флуктуаций фототока измерения повторялись 5-10 раз и общая ошибка в каждом конкретном случае находилась из среднего значения с учётом возможной систематической ошибки. С учётом вышеизложенного, ошибка при измерении времени затухания сенсибилизированной фосфоресценции не превышала 0,05 с, а времени разгорания - 0,1 с. Большее значение ошибки при измерении времени разгорания обусловлено тем, что флуктуации светового потока источника света влияют на точность измерения времени разгорания и не влияют на точность измерения времени затухания. Ошибка при измерении времени затухания фосфоресценции донора не превышала 0,5 мс.
В температурных исследованиях для уменьшения продольного градиента температуры кварцевая кювета помещалась в медную толстостенную трубочку. При этом для исследования с помощью диафрагмы выделялся участок высотой 2 мм, где находился в образце один из концов дифференциальной термопары. Толщина кюветы была равна 0,3 мм, диаметр - 2 мм. С целью уменьшения влияния поперечного градиента температуры контрольные опыты проводились в лопаточкообразной кювете, толщина исследуемого слоя в которой около 0,5 мм.
Измерение температуры производилось с помощью медь-константановой термопары, проградуированной по точкам плавления н.-парафинов. Один спай термопары находился в сосуде Дьюара с жидким азотом, а второй помещался непосредственно в раствор перед замораживанием. В качестве измерительного прибора использовался гальванометр М-95, с ценой деления 0,01 мВ/дел. Ошибка при измерении температуры не превышала 3 К.
При исследовании температурной зависимости интенсивности и времени затухания сенсибилизированной фосфоресценции нагревание образца происходило в результате испарения азота под образцом. Скорость изменения температуры при этом была около 3 град./мин.
При исследовании температурной зависимости интенсивности сенсибилизированной фосфоресценции спектральная ширина щели бралась максимальной для того, чтобы смещение максимума 0-0 полосы при изменении не превышала её. Это и тот факт, что при увеличении температуры распределение интенсивности в спектре сенсибилизированной фосфоресценции не изменяется, позволяло судить по изменению регистрируемой интенсивности в максимуме 0-0 полосы об изменении интегральной интенсивности.
Отжиг образца производился следующим образом. Полученный в результате быстрого замораживания образец нагревался от 77 К до определённой температуры из области 150-180 К и выдерживался при фиксированной температуре необходимое время (от 0,5 до 40 мин.). Затем образец помещался в жидкий азот, в котором и производилось измерение его люминесцентных характеристик при 77 К.
Для определения влияния отжига на интенсивность сенсибилизированной фосфоресценции записывались спектры фосфоресценции раствора до и после отжига и сравнивались их интегральные интенсивности. Следует заметить, что в этом случае результаты совпадали с результатами, полученными при регистрации сенсибилизированной фосфоресценции в максимуме 0-0 полосы с точностью до 10 %.
При исследовании зависимости интенсивности сенсибилизированной фосфоресценции от времени отжига при фиксированной температуре образец отжигался в течение времени t, затем измерялись его люминесцентные характеристики при температуре 77 К. После чего образец снова нагревался до температуры отжига и отжигался в течение времени t, в результате чего время его отжига составляло 2t. Затем снова измерялись его люминесцентные характеристики. Таким образом, процесс повторялся до тех пор, пока не прекращался рост интенсивности в результате отжига образца.
III. Влияние отжига на параметры фосфоресценции дибромдифенилоксида и аценафтена в н.-октане.
В данной главе представлены результаты исследования влияния отжига на спектры, кинетику и интенсивность сенсибилизированной фосфоресценции молекул акцептора и обычной фосфоресценции молекул донора.
Одной из задач дипломной работы было исследование изменения люминесцентных характеристик донорно-акцепторной пары в результате выдерживания образца при постоянной температуре. Вычислить энергию активации, а также произвести сравнение изменений люминесцентных параметров и активаций процессов, происходящих при отжиге для других донорно-акцепторных пар.
3.1. Обработка полученных данных.
Ранее установлено, что отжиг раствора для многих донорно-акцепторных пар может приводить к увеличению интенсивности фосфоресценции как донора, так и акцептора и к уменьшению времени затухания.
Результаты исследования влияния отжига на фосфоресценцию донора представлены на рис.3.1. График 1 характеризует фосфоресценцию дибромдифенилоксида до отжига, график 2 - после отжига. Из рисунка видно, что интенсивность фосфоресценции после отжига уменьшилась примерно в 2 раза, чем до отжига.
Так как были получены данные, что интенсивность фосфоресценции акцептора уменьшилась после отжига (причем в большее число раз нежели донора), то представляло особый интерес исследование сенсибилизированной фосфоресценции акцептора.
Полученные данные по фосфоресценции донорно-акцепторной смеси, а так же по времени затухания акцептора сведены в табл.3.1.
Табл.3.1. Влияние отжига на параметры фосфоресценции компонент донорно-акцепторной смеси дибромдифенилоксида и аценафтена в н.-октане.
донор
акцептор
I/I0
I/I0
ф/ф0
До отжига
1
1
1
После отжига
0,55
0,32
0,79
Рис.3.1.
Обозначим интенсивность сенсибилизированной фосфоресценции после быстрого замораживания образца до 77 К через I(0). После отжига образца в течение определённого времени t при температуре Т и последующем охлаждении до 77 К интенсивность сенсибилизированной фосфоресценции обозначим через I(t). Тогда I(t) = I(t) - I(0) - означает прирост интенсивности сенсибилизированной фосфоресценции в процессе отжига образца в течение этого времени.
Можно предположить, что при фиксированной температуре Т прирост интенсивности I(t)в зависимости от времени отжига происходит по закону, определяемому экспонентой:
It = I1-exp(-t/), (3.1)
с характерным временем , которое зависит от температуры отжига. I - прирост интенсивности при длительном отжиге образца - t ».
Экспериментально эта зависимость была проверена в данной работе для пары дибромдифенилоксид-аценафтен в н.-октане. На рис. 3.2 представлен график зависимости [It - I]/I от t в полулогарифмическом масштабе.
Рис. 3.2. Зависимость интенсивности сенсибилизированной фосфоресценции аценафтена, донор - дибромдифенилоксид, в н.-октане от времени отжига при температурах: 1 - 167 К, 2 - 180 К, 3 - 195 К; СД=1.2510-3М , СА=1.2510-3М; z = ln [(I()-I(t))/I()].
Как видно из рисунка, экспериментальные точки хорошо укладываются на экспоненту (сплошная линия) с различными углами наклона, определяемыми температурой отжига. Величина, обратная тангенсу угла наклона прямых, соответствует характерному времени процесса при данной температуре отжига. Для всех исследованных систем повышение температуры отжига раствора приводит к уменьшению характерного времени процесса нарастания.
Табл.3.1. Характерное время процесса нарастания числа одиночных молекул акцептора, участвующих в переносе энергии в процессе отжига.
Тотж, К
q, 1/мин
Дибромдифенилоксид-аценафтен в н.-октане
167
0,48
180
0,71
195
1,67
Выше было показано, что в твёрдом теле подобные физические и химические процессы обычно характеризуются Аррениусовской зависимостью константы скорости процесса от температуры:
q(Т) = q() ехр (-Еак/RT) (3.2)
где q() - предэкспоненциальный множитель, Еак- энергия активации процесса.
Соответственно для :
(Т) = (1/ q()) ехр (Еак/RT). (3.3)
Представляло интерес экспериментально проверить эту зависимость.
Прологарифмируем уравнение Аррениуса (48):
ln = Еак/RT- ln [q()]. (3.4)
Написав это уравнение для различных температур Т1 и Т2 и вычтя второе уравнение из первого, получим:
ln(1/2)= Еак/R (1/T1- 1/Т2). (3.5)
Если это уравнение справедливо, то на графике в координатах ln(1/)от (1/T1- 1/Т) экспериментальные точки должны располагаться на прямой с тангенсом угла наклона, равнымЕак/R.
На рис. 3.3 представлена данная зависимость для пары дибромдифенилоксид-аценафтен в н.-октане. Как видно из рисунка, экспериментальные точки хорошо укладываются на экспоненту (сплошная линия). Это говорит об экспоненциальной зависимости характеристического времени процесса от температуры. Следовательно, и константа скорости q физического процесса, происходящего при отжиге экспоненциально растёт с повышением температуры.
Таким образом, на основании этих экспериментальных данных можно утверждать, что физический процесс, приводящий к увеличению числа участвующих в переносе энергии мономерных молекул акцептора при отжиге описывается Аррениусовской зависимостью константы скорости процесса от температуры.
Величина тангенса угла наклона прямых позволяет определить энергию активации процесса: Еак= Rtg.
ln(ф1/ф)
Рис.3.3. Зависимость характеристического времени процесса от температуры, для донорно-акцепторных пары дибромдифенилоксид-аценафтен в н.-октане (СД=1.2510-3М, СА=1.2510-3М).
Энергия активации этого процесса для данной донорно-акцепторной пары представляет величину 9 кДж/моль.
3.2. Основные результаты и выводы.
Результаты экспериментального исследования влияния отжига на параметры фосфоресценции молекул дибромдифенилоксид-аценафтен в замороженных н.-парафиновых растворах можно сформулировать следующим образом:
1. Интегральная интенсивность спектра фосфоресценции дибромдифенилоксида в н.-октане в присутствии акцептора после отжига при Т=167К уменьшилась в 2 раза. При этом так же наблюдается смещение максимума 0-0 полосы в спектре фосфоресценции донора в коротковолновую область на 1-2нм.
2. Интегральная интенсивность спектра фосфоресценции акцептора при отжиге также уменьшается, причем в большее число раз, чем донора. Закон изменения интенсивности фосфоресценции акцептора от времени отжига носит экспоненциальный характер. Для всех исследованных систем повышение температуры отжига раствора приводит к уменьшению характерного времени процесса нарастания.
3. Закон зависимости константы скорости процесса носит аррениусовский характер:
q(Т) = q() ехр (-Еак/RT)
Энергия активации процесса для данной донорно-акцепторной пары представляет величину 9 кДж/моль.
4. Время затухания сенсибилизированной фосфоресценции акцептора после отжига уменьшается в 1,3 раза, при этом закон затухания становится не экспоненциальным. Вопрос о причинах данного процесса требует дальнейшего исследования.
Как показали результаты данной работы поведение пары дибромдифенилоксид-аценафтен при отжиге прямо противоположенные донорно-акцепторным парам бензофенон-аценафтен, бензофенон-нафталин, антрон-флуорен, интегральная интенсивность которых увеличивается в процессе отжига [13]. Такое поведение можно предположительно связать с тем, что растворимость дибромдифенилоксида в н.-октане намного меньше, чем остальных указанных веществ.
Если увеличение интенсивности фосфоресценции двухкомпонентных смесей авторы работ [13,25-27] объясняют распадом гетероассоциатов и снятием миграционно-ускоренного тушения, то в данном случае можно предположить, что из-за плохой растворимости происходит выкристаллизация примеси при температуре отжига, что приводит к уменьшению числа мономерных молекул.
Но не смотря на вышесказанное после замены донора энергии некоторые закономерности, полученные для бензофенона и других веществ, сохранились. Например, зависимость изменения интенсивности фосфоресценции акцептора от времени осталась экспоненциальной и зависимость константы скорости процесса от температуры носит аррениусовский характер.
Энергия активации процесса ответственного за рост интенсивности фосфоресценции смеси бензофенон-аценафтен Еак=40кДж/моль, а дибромдифенилоксид-аценафтен Еак=9кДж/моль.
Стоит отметить, что уменьшение времени затухания аценафтена после отжига запаздывает за спадом интенсивности сенсибилизированной фосфоресценции, т.е. ф/фo > I/Io. Если учесть наличие миграционно-ускоренного тушения на ассоциаты (микрокристаллы) в данном случае, то такое поведение данной зависимости стоило ожидать, так как время затухания фд донора во много раз больше времени затухания фак акцептора (порядка 1000 раз) и на акцептор данный процесс влияет сильнее.
Литература.
1. Климов В.В. Фотосинтез и биосфера // Соросовский образовательный журнал. - 1996. - № 8. - С. 6-13.
2. Миронов А.Ф. Фотодинамическая терапия рака - новый эффективный метод диагностики и лечения злокачественных опухолей // Соросовский образовательный журнал. - 1996. - № 8. - С. 32-39.
3. Зенькевич Э.И., Сагун Е.И., Кнюкшто В.Н. и др. Дезактивация S1- и Т1- состояний порфиринов и хлоринов при их взаимодействии с молекулярным кислородом в растворах // Ж. прикл. спектр. - 1996. - Т. 63. - № 4. - С. 599-612.
4. Копылова Т.Н. , Светличный В.А., Кузнецова Р.Т. и др. Флуоресцентные характеристики органических молекул при мощном импульсном лазерном возбуждении // Опт. и спектр. - 1998. - Т. 85. - № 5, - С. 778-782.
5. Бодунов Е.Н. Приближённые методы в теории безызлучательного переноса энергии локализованных возбуждений в неупорядоченных средах // Опт. и спектр. - 1993. - Т. 74. - № 3.- С. 518-551.
6. Королев В.В., Грицан Н.П., Хмельницкий И.В. и др. Определение параметров статического тушения фосфоресценции органических молекул по обменно-резонансному механизму // Хим. физ. - 1987. - Т. 6. - № 7. - С. 892-898.
7. Бурнштейн А.И. Концентрационное тушение некогерентных возбуждений в растворах // УФН. - 1984. - Т. 143. - № 4. - С. 533 - 600.
8. Бодунов Е.Н. Теоретические исследования спектральной миграции возбуждений в трехмерных средах. (Обзор) // Опт. и спектр. - 1998. - Т. 84. - № 3. - С. 405-430.
9. Журавлёв С.В., Левшин Н.В., Салецкий А.Н., Южаков В.И. О роли миграции между мономерными молекулами родаминовых красителей в концентрационном тушении люминесценции растворов // Опт. и спектр. - 1982. - Т. 53. - № 2. - С. 245-251.
10. Лёвшин Л.В., Салецкий А.М. Люминесценция и её измерения. Молекулярная люминесценция. - М.: Изд-во МГУ, 1989. - 272 с.
11. Ермолаев В.Л. Перенос энергии в органических системах с участием триплетного состояния. // УФН. - 1963. - Т. 80. - № 1. - С. 33-40.
12. Левшин Л.В., Салецкий А.М. Оптические методы исследования молекулярных систем. Ч.1. Молекулярная спектроскопия. - М.: Изд-во МГУ, 1994. - 320 с.
13. Дерябин и др. Особенности сенсибилизированной фосфоресценции аценафтена в кристаллах бензофенона / Дерябин М.И., Куликова О.И., Голубин М.А.; Ставроп. гос. пед. ун-т. - Ставрополь, 1996. - 10с. - Деп. в ВИНИТИ 03.04.96., № 1094 - В 96.
14. *Fцrster Th. // Ann. Phys. - 1948. - V. 2. - № 1-2. - Р. 55-75.
15. Dexter D.L. A Theory of Sensitized Luminescence in Solids // J. Chem. Phys. - 1953. - V. 21. - № 5. - P. 836-850.
16. Ермолаев В.Л. Сенсибилизированная фосфоресценция ароматических соединений (перенос энергии с триплетного уровня на триплетный) // Изв. АН СССР. - 1956. -Т. 20. - № 5. - С. 514-519.
17. Katayama Hideaki, Ifo Shinzaburo, Yamamoto Masahide Intramolecular triplet energy transfer of the system having donor and acceptor at the chain ends. II. The carbazole-naphthalene system // J. Phys. Chem. - 1992. - V. 96. - № 25. - Р. 10115-10119.
18. Haggquist Gregory W., Katayama Hideaki, Tsuchida Akira and oth. Intramolecular triplet energy transfer. III. A carbazole-naphthalene system having short chain length methylene spacer units // J. Phys. Chem. - 1993. - V. 97. - № 37. - Р. 9270-9273.
19. Engel Paul S., Horsey Douglas W., Scholz John N. аnd oth. Intramolecular triplet energy transfer in ester-linked bichromophorie aroalkanes and naphthalenes // J. Phys. Chem. - 1992. - V. 96. - № 19. - Р. 7524-7535.
20. Давыдов А.С. Электронные возбуждения и колебания решётки в молекулярных кристаллах// Изв. АН СССР. - 1970. -Т. 24. - № 3. - С. 483-489.
21. Петренко А.Н. Интегралы переноса триплетного возбуждения в линейных молекулярных кристаллах // Физ. твёрд. тела (С.-Перегбург). -1994. - Т. 36. - № 6. - С. 1784-1787.
22. Breenner H.C. Studies of triplet energy transter in molekular crystals by ODMR and high pressure techniques // Укр. физ. ж. - 1995. - Т. 40. - № 7. - С. 659-666.
23. Багнич С.А. Перколяция энергии электронного возбуждения по триплетным уровням бензальдегида в пористой золь-гелевой матрице // Опт. и спектр. - 1996. - Т. 80. - № 5. - С. 769-772.
24. Багнич С.А. Низкоэффективный транспорт триплетных возбуждений безальдегида в матрице пористое стекло - полиметилметакрилат // Опт. и спектр. - 1997. - Т. 82. - № 4. - С. 567-572.
25. Багнич С.А., Мельниченко И.М., Подденежный Е.Н. и др. Влияние матрицы на фосфоресценцию ароматических соединений в пористых золь-гелевых стеклах // Опт. и спектр. - 1995. - Т. 79. - № 6 - С. 936-941.
26. Багнич С.А., Богомолов В.Н., Курдюков Д.А. и др. Фосфоресценция ароматических соединений в пористой матрице натриево-боросиликатного стекла и взаимодействие со стенками пор // Физ. тв. тела (С-Петербург). - 1995. - Т. 37. - № 10. - С. 2979-2986.
27. Багнич С.А. Фосфоресценция бензофенона в условиях взаимодействия со стенками пористых матриц // Опт. и спектр. - 1996. - Т. 80. - №5. - С. 773-775.
28. Eremenko A.M., Smirnova N.P. Specific features of dye molecular luminescence in solid matrices // Funct. Mater. - 1996. - V. 3. - № 4. - P. 511-517.
29. Бегер В.Н., Сечкарев А.В. Влияние межмолекулярных взаимодействий в пространственно-неоднородных ансамблях молекул на безызлучательный перенос энергии электронного возбуждения // Ж. физ. химии. - 1995. - Т. 69. - № 3. - С. 567-572.
30. Бегер В.Н., Земский В.И. Особенности температурного тушения флуоресценции адсорбированных молекул органических красителей // Опт. и спектр. - 1993. - Т. 74. - № 3. - С. 552-556.
31. Сечкарев А.В., Земский В.И., Бегер В.Н. и др. Спектральные проявления фрактального распределения адсорбированных в порах молекул в условиях неоднородности межмолекулярных взаимодействий // Ж. физ. химии. - 1992. - Т. 66. - №2. - С. 329-334.
32. Бегер В.Н., Колесников Ю.Л., Сечкарев А.В. Особенности концентрационного тушения флуоресценции молекул красителей, адсорбируемых неоднородной поверхностью диоксида кремния // Опт. и спектр. - 1995. - Т. 78. - № 2. - С. 249-253.
33. Осипов В.В., Самойленко Ю.Я., Риттер А.Я. Существование динамического и статического механизмов тушения флуоресценции в адсорбируемом слое // Химия высоких энергий. - 1995. - Т. 29. - № 5. - С. 363-367.
34. Горяев М.А. Спектральная зависимость квантового выхода люминесценции адсорбированных красителей // Опт. и спектр. - 1997. - Т. 82. - №5. - С. 781-783.
35. Гобов Г.В., Конашенко В.И., Нурмухаметов Р.Н. Триплет-триплетный перенос энергии в условиях эффекта Шпольского // Опт. и спектр. - 1976. - Т. 40. - № 2. - С. 406-408.
36. Гобов Г.В., Конашенко В.И. Триплет-триплетный перенос энергии в условиях эффекта Шпольского // Ж. прикл. спектр. - 1978. - Т. 28. - № 4. - С. 663-667.
37. Гобов Г.В., Юденков В.В. Спектры сенсибилизированной фосфоресценции дифениленоксида в бинарных растворителях при 77 К // Электронно-колебательные спектры некоторых ароматических соединений. - Смоленск, 1975. - С. 20-23.
38. Гобов Г.В., Конашенко В.И. Спектры сенсибилизированной фосфоресценции кристаллических растворов при 77 К // Опт. и спектр. - 1977. - Т. 43. - № 6. - С. 1054-1059.
39. Гребенщиков Д.М., Дерябин М.И. Двухэкспоненциальное затухание сенсибилизированной фосфоресценции органических молекул в растворах при 77 К // Хим. физ. - 1989. - Т. 8. - № 12. - С. 1615-1618.
40. Вавилов С.И. Теория концентрационного тушения флуоресценции растворов // Собр. соч.- М.: изд. АН СССР, 1952. - Т. 2. - С. 122-130.
41. Бодунов Е.Н., Цвирко М.П. Расчёт оптимальной концентрации активаторов, обеспечивающих максимальный выход сенсибилизированной люминесценции в двухкомпонентных средах // Опт. и спектр. - 1992. - Т. 72. - № 4. - С. 884-888.
42. Бодунов Е.Н., Берберан-Сентуш М.Н., Мартиню Ж.М.Г. и др. Расчёт квантового выхода люминесценции при прыжковом механизме тушения методом Монте-Карло // Опт. и спектр. - 1996. - Т. 80. - № 6. - С. 909-912.
43. Бодунов Е.Н. Расчёт скорости концентрационного самотушения в рамках метода непрерывных во времени случайных блужданий // Опт. и спектр. - 1996. - Т. 81. - № 3. - С. 405-408.
44. Берберан-Сентуш М.Н., Бодунов Е.Н., Мартиню Ж.М.Г. Концентрационная зависимость квантового выхода сенсибилизированной люминесценции при переносе энергии с высоких возбужденных состояний // Опт. и спектр. - 1997. - Т. 83. - № 3. - С. 378-383.
45. Берберан-Сентуш М.Н., Бодунов Е.Н., Мартиню Ж.М.Г. Прыжковый механизм тушения люминесценции и диффузионное приближение // Опт. и спектр. - 1998. - Т. 85. - № 6. - С. 948-951.
46. Асенчук О.Д., Могильный В.В. Фотоиндуцированное структурирование и миграция энергии в ансамблях трехуровневых центрах при насыщении // Опт. и спектр. - 1995. - Т. 79. - № 5. - С. 800-804.
47. Багнич С.А., Дорохин А.В. Миграция энергии по триплетным уровням бензофенона в полиметилметанокрилате // Физ. тв. тела - 1991. - Т. 33. - № 5. - С. 1382-1386.
48. Сенаторова Н.Р., Левшин Л.В., Рыжиков Б.Д. Концентрационное тушение люминесценции в условиях неоднородного уширения электронных спектров молекул растворённого вещества // Ж. прикл. сектр. - 1979. - Т. 30. - № 4. - С. 658-661.
49. Рыжиков Б.Д., Левшин Л.В., Сенаторов Н.Р. О природе длинноволнового концентрационного смещения спектров люминесценции молекул примеси // Опт. и спектр. - 1978. - Т. 45. - № 2. - С. 282-287.
50. Гаевский А.С., Давыдова Н.А., Добровольская О.В. и др. Миграция энергии триплетных состояний пигментов типа хлорофилла и флуоресцеина // Изв. АН СССР - сер. физ. - 1980. - Т. 44. - № 4. - С. 783-788.
51. Бисенбаев А.К., Вязанкина Л.А., Мукушев Б.Т. и др. Исследования процессов ассоциации молекул красителей в водных растворах полиэлектролитов // Ж. прикл. спектр. - 1994. - Т. 60. - № 5-6 - С. 406-410.
52. Низамов Н., Хидирова Т.Ш., Захидов У. и др. Люминесценция ассоциированных молекул и комплексов органических красителей в растворах // Изв. АН СССР - сер. физ. - 1990. - Т. 54. - № 3. - С. 502-506.
53. Низамов Н., Хидирова Т.Ш., Юнусова М. Люминесценция разнородных димеров некоторых полиметиновых красителей в дихлорэтане // Ж. прикл. спектр. - 1991. - Т. 55. - № 5. - С. 881-884.
54. Низамов Н., Умаров К.У., Атаходжаев А.К. Спектроскопическое исследование межмолекулярных взаимодействий в растворах пиронина G и новометиленового голубого // Ж. прикл. спектр. - 1979. - Т. 30. - № 4. - С. 651-657.
55. Спектроскопия внутри- и межмолекулярных взаимодействий. / Под ред. Н. Г. Бахшиева. - вып. 2. - Л.: Изд. ЛГУ, 1978г. - 212 с.
56. *Левшин Л.В., Рева М.Г., Рыжиков Б.Д. // Вестник МГУ. - Сер. физика, астрономия. - 1981. - Т. 22. - № 4. - С. 75.
57. Журавлёв С.В., Левшин Л.В., Салецкий А.М. и др. Миграция электронного возбуждения в смешанных растворах красителей // Опт. и спектр. - 1984. - Т. 56. - № 6. - С. 1044- 1048.
58. Сверчков С.Е., Сверчков Ю.Е. Влияние структуры матрицы на скорость тушения люминесценции примесных центров в теории прыжковой миграции // Опт. и спектр. - 1992. - Т. 73. - № 3. - С. 488-492.
59. Соловьёв А.Н., Южаков В.И. Влияние комплексообразования на спектральные и люминесцентные характеристики растворов аминокумаринов // Изв. АН СССР. - Сер. физ.- 1990. -Т. 54. - № 3. - С. 513-517.
60. Шпольский Э.В. Проблемы происхождения и структуры квазилинейчатых спектров органических соединений при низких температурах // УФН. - 1962. - Т. 77. - № 2. - С. 321-336.
61. Davydov А.S. The radiationless transfer of energy of electronic excitation between impurity molecules in crystals // Phys. Stat. Solidi. - 1968. - V. 30. - № 1. - C. 357-366.
62. Brandon R., Gerkin R., Hutchison C. Electron magnetic resonance of triplet states and the detection of energy transfer in crystals // J. Chem. Phis., 1962, V. 37, № 2, Р. 447-448.
63. Сапунов В.В., Егорова Г.Д. Влияние температуры на некоторые бимолекулярные процессы с участием порфиринов и металлопорфиринов в водных растврах // Ж. прикл. спектр. - 1993. - Т. 59. - № 1-2. - С. 54-60.
64. Вавилов С.И. Собр. соч. - М.: Изд-во АН СССР, 1954. - Т. 1. - 450 с.
65. Химическая энциклопедия: В 5 т.: / Под ред. И. Л. Кнунянца. и др. - М.: Большая Российская энцикл., 1990. - Т. 2. - С. 631-635.
66. Борисевич Н.А., Казберук Д.В., Лысак Н.А. и др. Фотофизические и фотохимические релаксационные процессы в ароматических кетонах // Изв. АН СССР. - сер. физич. - 1990. - Т. 54. - № 3. - С. 370-376.
67. Головченко В.П., Файдыш А.Н., Кольчинский М.З. Влияние структуры решётки на фосфоресценцию чистых и примесных кристаллов бензофенона // Изв. АН СССР - сер. физич. - 1970. - Т. 34. - № 3. - С. 589-593.
68. Мамедов Х.И. Спектры поглощения, флуоресценции и фосфоресценции аценафтена в парафиновых растворителях // Изв. АН СССР - сер. физич. - 1965. - Т. 29. - № 8. - С. 1404-1406.
69. Dekkers J.J. Hoornweg G. Ph., Maclean C. and oth. Some characteristic features of Shpolskii spectra fluorescence spectra of acenaphthene in n-alkane matrices // J. of mol. spectr. - 1977. - V. 68. - P. 56-67.
70. Дерябин М.И., Дзарагазова Т.П., Падалка В.В. и др. Температурная зависимость спектров фосфоресценции аценафтена в матрицах н.-гексана // Вестник Ставропльского гос. пед. ун-та. - 1995. - № 2. - С. 116-119.
71. Борисевич Н.А., Водоватов Л.Б., Дьяченко Г.Г. и др. Колебательная структура уровней свободных молекул аценафтена в основном и возбуждённом электронных состояниях // Оп. и спектр. - 1996. - Т. 81. - № 5. - С. 757-761.
72. Доброхотова В.К., Кульчицкий В.А., Набойкин Ю.В. Спектры замороженных растворов двух примесей при 77К// Известия АН СССР. Серия физическая. - 1963. - Т.27. - №6. - С.690-692.
73. Климова Л.А., Нерсесова Г.Н. Спектры флуоресценции и поглощения бинарных смесей ароматических углеводородов в замороженных кристаллических растворах// Журнал прикладной спектроскопии. - 1965. - Т.2. - №1. - С.45-50.
75. Cadas J.P., Courpron C., Lochet R. Transfersts б energie entre entre йhdts triplets miltien cristallin a 77K// CR.-1962.-V.254. - №4. - P.2490 - 2492.
76. Rouset A., Lochet R., Cadas J.P.Transferts б energie entre niveux triplets de la benzophenone et du naphtaline cristallisesa 77K// J. Phys.-1963.-V.24, №2. - P.2141-2143.
77. Гребенщиков Д.М., Блужин В.Б., Дзарагазова Т.П. и др. Т-Т перенос энергии между разными примесными центрами в матрицах Шпольского// Современные аспекты тонкоструктурной и селективной спектроскопии. - М.: 1984. - С. 27-31.
78. Расколодько В.Г., Файдыш А.Н. Спектры фосфоресценции и миграция энергии триплетного уровня в кристаллах бензофенона// Известия АН СССР. Серия физическая. - 1965. - Т.29. - №8. - С. 1309-1312.
79. Болотникова Т.Н., Наумова Т.М. К вопросу о концентрационной зависимости квазилинейчатых спектров фосфоресценции// Оптика и спектроскопия. - 1963. - Т.25. - №3. - С. 460 - 463.
80. Артюхов В.Я., Майер Г.В., Риб Н.Р.. Квантово-химическое исследование триплет-триплетного переноса энергии электронного возбуждения в бихромоформных молекулярных системах // Оптика и спектроскопия. - 1997. - Т.83. - №5. - С.743 - 748.
81. Spectroscopy and Excitation Dynamics of Condensed Molecular System / Eds. Agranovich V.H., Hochstraser R.M. - Amsterdam: North - Holland, 1983. Спектроскопия и динамика возбуждений в конденсированных молекулярных системах / Под ред. Аграновича В.М. и Хохштрассера Р.М. - М, 1987 - 492с.
82. Мак-Глин С., Адзуми Т., Киносита М. Молекулярная спектроскопия триплетного состояния. - М.: Мир, 1972 - 448с.
84. Агранович В.М., Галанин М.Д. Перенос энергии электронного возбуждения в конденсированных средах. - М.: Наука, 1978 - 384с.
85. Ландау Л.Д., Лифшиц Е.М. Квантовая механика. - М.: Изд-во физико-математической литературы, 1963. - 704 с.
86. Inokuti M. Hirayama F. Influence of energy transfer by the exchange mecanism on donor luminescence // J. Chem. Phys. - 1965. - V.43. - №6. - P.1978 - 1989.
87. Медведов Э.С., Ошеров В.И. Теория безызлучательных переходов в многоатомных молекулах. - М.: Наука, 1977. - С.7-59.
89. Паркер С. Фотолюминесценция растворов. - М.: Мир, - 1972 - 511с.
90. Красновский А.А. Фотохимия хлорофилла и его аналогов/ В сб. элементарные фотопроцессы в молекулах - М.: Наука. - 1966. - С. 213 - 242.
91. Портер Дж. Профессор Александр Теренин (1896 - 1967) - пионер фотохимии. К 100 - летию со дня рождения// Оптика и спектроскопия. - 1997. - Т.83. - №4. - С. 534 - 538.
92. Гурвич А.М. Введение в физическую химию кристаллофосфоров - М.: Высшая школа, 1982 - 376 с.