p align="left">Таким образом, горизонтальный барический градиент есть вектор, направление которого совпадает с направлением нормали к изобаре в сторону уменьшения давления, а числовое значение равно производной от давления по этому направлению. Обозначим этот вектор символом -- р, а числовую его величину -dp/dn, где п -- направление нормали к изобаре.
Как всякий вектор, горизонтальный барический градиент можно графически представить стрелкой; в данном случае стрелкой, направленной по нормали к изобаре в сторону убывания давления. При этом длина стрелки должна быть пропорциональна числовой величине градиента.
В разных точках барического поля направление и величина барического градиента будут, конечно, разными. Там, где изобары сгущены, изменение давления на единицу расстояния по нормали к изобаре больше; там, где изобары раздвинуты, оно меньше. Иначе говоря, величина горизонтального барического градиента обратно пропорциональна расстоянию между изобарами.
Если в атмосфере есть горизонтальный барический градиент, это означает, что изобарические поверхности в данном участке атмосферы наклонены к поверхности уровня и, стало быть, пересекаются с нею, образуя изобары. Изобарические поверхности наклонены всегда в направлении градиента, т. е. туда, куда давление убывает.
Горизонтальный барический градиент является горизонтальной составляющей полного барического градиента. Последний представляется пространственным вектором, который в каждой точке изобарической поверхности направлен по нормали к этой поверхности в сторону поверхности с меньшим значением давления. Числовая величина этого вектора равна -dp/dn; но здесь n -- направление нормали к изобарической поверхности. Полный барический градиент можно разложить на вертикальную и горизонтальную составляющие, или на вертикальный и горизонтальный градиенты. Можно разложить его и на три составляющие по осям прямоугольных координат X, Y, Z. Давление меняется с высотой гораздо сильнее, чем в горизонтальном направлении. Поэтому вертикальный барический градиент в десятки тысяч раз больше горизонтального. Он уравновешивается или почти уравновешивается направленной противоположно ему силой тяжести, как это вытекает из основного уравнения статики атмосферы. На горизонтальное движение воздуха вертикальный барический градиент не влияет. Дальше в этой главе мы будем говорить только о горизонтальном барическом градиенте, называя его просто барическим градиентом.
38. Скорость ветра
Как нам уже известно из главы второй, ветром называют движение воздуха относительно земной поверхности, причем, как правило, имеется в виду горизонтальная составляющая этого движения. Однако иногда говорят о восходящем или о нисходящем ветре, учитывая также и вертикальную составляющую. Ветер характеризуется вектором скорости. На практике под скоростью ветра подразумевается только числовая величина скорости; именно ее мы будем в дальнейшем называть скоростью ветра, а направление вектора скорости -- направлением ветра.
Скорость ветра выражается в метрах в секунду, в километрах в час (в особенности при обслуживании авиации) и в узлах (в морских милях в час). Чтобы перевести скорость из метров в секунду в узлы, достаточно умножить число метров в секунду на 2.
Существует еще оценка скорости (или, как принято говорить в этом случае, силы) ветра в баллах, так называемая шкала Бофорта, по которой весь интервал возможных скоростей ветра делится на 12 градаций. Эта шкала связывает силу ветра с различными его эффектами, такими, как степень волнения на море, качание ветвей и деревьев, распространение дыма из труб и т. п. Каждая градация по шкале Бофорта носит определенное название. Так, нулю шкалы Бофорта соответствует штиль, т. е. полное отсутствие ветра. Ветер в 4 балла, по Бофорту называется умеренным и соответствует скорости 5--7 м/сек; в 7 баллов -- сильным, со скоростью 12--15 м/сек; в 9 баллов -- штормом, со скоростью 18--21 м/сек; наконец, ветер в 12 баллов по Бофорту-- это уже ураган, со скоростью свыше 29 м/сек.
Различают сглаженную скорость ветра за некоторый небольшой промежуток времени, в течение которого производятся наблюдения, и мгновенную скорость ветра, которая вообще сильно колеблется и временами может быть значительно ниже или выше сглаженной скорости. Анемометры обычно дают значения сглаженной скорости ветра, и в дальнейшем речь будет идти именно о ней.
У земной поверхности чаще всего приходится иметь дело с ветрами, скорости которых порядка 4--8 м/сек и редко превышают 12--15 м/сек. Но все же в штормах и ураганах умеренных широт скорости могут превышать 30 м/сек, а в отдельных порывах достигать 60 м/сек. В тропических ураганах скорости ветра доходят до 65 м/сек, а отдельные порывы -- до 100 м/сек. В маломасштабных вихрях (смерчи, тромбы) возможны скорости и более 100 м/сек. В так называемых струйных течениях в верхней тропосфере и в нижней стратосфере средняя скорость ветра за длительное время и на большой площади может доходить до 70--100 м/сек.
Скорость ветра у земной поверхности измеряется анемометрами разной конструкции. Чаще всего они основаны на том, что давление ветра приводит во вращение приемную часть прибора (чашечный анемометр, мельничный анемометр и пр.) или отклоняет ее от положения равновесия (доска Вильда).По скорости вращения или величине отклонения можно определить скорость ветра. Есть конструкции, основанные на манометрическом принципе (трубка Пито). Имеется ряд конструкций самопишущих приборов -- анемографов и (если измеряется также и направление ветра) анеморумбографов. Приборы для измерения ветра на наземных станциях устанавливаются на высоте 10--15 м над земной поверхностью. Измеренный ими ветер и называется ветром у земной поверхности.
Направление ветра
Нужно хорошо запомнить, что, говоря о направлении ветра, имеют в виду направление, откуда он дует. Указать это направление можно, назвав либо точку горизонта, откуда дует ветер, либо угол, образуемый направлением ветра с меридианом места, т. е. его азимут. В первом случае различают 8 основных румбов горизонта: север, северо-восток, восток, юго-восток, юг, юго-запад, запад, северо-запад -- и 8 промежуточных румбов между ними: север-северо-восток, восток-северо-восток, восток-юго-восток, юг-юго-восток, юг-юго-запад, запад-юго-запад, запад-северо-запад, север-северо-запад (рис. 68). 16 румбов, указывающих направление, откуда дует ветер, имеют следующие сокращенные обозначения, русские и международные:
Если направление ветра характеризуется углом его с меридианом, то отсчет ведется от севера по часовой стрелке. Таким образом, северу будет соответствовать 0° (360°), северо-востоку 45°, востоку 90°, югу 180°, западу 270°. При наблюдениях над ветром в высоких слоях атмосферы направление его, как правило, указывается в градусах, а при наблюдениях на наземных метеорологических станциях -- в румбах горизонта.
Направление ветра определяется с помощью флюгера, вращающегося около вертикальной оси. Под действием ветра флюгер принимает положение по направлению ветра. Флюгер обычно соединяется с доской Вильда.
Так же как и для скорости, различают мгновенное и сглаженное направление ветра. Мгновенные направления ветра значительно колеблются около некоторого среднего (сглаженного) направления, которое определяется при наблюдениях по флюгеру.
Однако и сглаженное направление ветра в каждом данном месте Земли непрерывно меняется, а в разных местах в одно и то же время оно также различно. В одних местах ветры различных направлений имеют за длительное время почти равную повторяемость, в других -- хорошо выраженное преобладание одних направлений ветра над другими в течение всего сезона или года. Это зависит от условий общей циркуляции атмосферы и отчасти от местных топографических условий.
При климатологической обработке наблюдений над ветром можно для каждого данного пункта построить диаграмму, представляющую собой распределение повторяемости направлений ветра по основным румбам, в виде так называемой розы ветров (рис. 69). От начала полярных координат откладываются направления по румбам горизонта (8 или 16) отрезками, длины которых пропорциональны повторяемости ветров данного направления. Концы отрезков можно соединить ломаной линией. Повторяемость штилей указывается числом в центре диаграммы (в начале координат). При построении розы ветров можно учесть еще и среднюю скорость ветра по каждому направлению, умножив на нее повторяемость данного направления. Тогда график покажет в условных единицах количество воздуха, переносимого ветрами каждого направления.
Для представления на климатических картах направление ветра обобщают разными способами. Можно нанести на карту в разных местах розы ветров. Можно определить равнодействующую всех скоростей ветра (рассматриваемых как векторы) в данном месте за тот или иной календарный месяц в течение многолетнего периода и затем взять направление этой равнодействующей в качестве среднего направления ветра. Но чаще определяется преобладающее направление ветра. Именно, определяется квадрант с наибольшей повторяемостью. Средняя линия этого квадранта принимается за преобладающее направление.
Порывистость ветра
Ветер постоянно и быстро меняется по скорости и направлению, колеблясь около каких-то средних величин. Причиной этих колебаний (пульсаций, или флуктуации) ветра является турбулентность, о которой говорилось в главе второй. Колебания эти можно регистрировать чувствительными самопишущими приборами. Ветер, обладающий резко выраженными колебаниями скорости и направления, называют порывистым. При особенно сильной порывистости говорят о шквалистом ветре.
При обычных станционных наблюдениях над ветром определяют среднее (сглаженное) направление и среднюю его скорость за промежуток времени порядка нескольких минут. При наблюдениях по флюгеру Вильда наблюдатель должен в течение двух минут следить за колебаниями флюгарки и в течение двух минут за колебаниями доски Вильда, а в результате определить среднее (сглаженное) направление и среднюю (сглаженную) скорость за это время. Чашечный анемометр дает возможность определить среднюю скорость ветра за любой конечный промежуток времени.
Однако представляет интерес также и изучение порывистости ветра. Порывистость можно характеризовать отношением амплитуды колебаний скорости ветра за некоторый промежуток времени к средней скорости за то же время; при этом берется либо средняя, либо наиболее часто встречающаяся амплитуда. Под амплитудой подразумевается разность между последовательными максимумом и минимумом мгновенной скорости. Есть и другие характеристики изменчивости, в том числе и направленияветра.
Порывистость тем больше, чем больше турбулентность. Следовательно, она сильнее выражена над сушей, чем над морем; особенно велика в районах со сложным рельефом местности; больше летом, чем зимой; имеет послеполуденный максимум в суточном ходе.
В свободной атмосфере турбулентность может приводить к болтанке самолетов. Болтанка особенно велика в сильно развитых облаках конвекции. Но она резко возрастает и при отсутствии облаков в зонах так называемых струйных течений.
Влияние препятствий на ветер
Всякое препятствие, стоящее на пути ветра, будет как-то на него влиять, возмущать поле ветра. Такие препятствия могут быть и крупномасштабными, как горные хребты, и мелкомасштабными, как здания, деревья, лесные полосы и т. д. Прежде всего препятствие отклоняет воздушное течение: оно должно либо обтекать препятствие с боков, либо перетекать через него сверху. При этом горизонтальное обтекание происходит в большей степени. Перетекание происходит тем легче, чем неустойчивее стратификация воздуха, т. е. чем больше вертикальные градиенты температуры в атмосфере. Перетекание воздуха через препятствия приводит к очень важным следствиям, таким, как увеличение облаков и осадков на наветренном склоне горы при восходящем движении воздуха и, наоборот, рассеяние облачности на подветренном склоне при нисходящем движении.
Обтекая препятствие, ветер перед ним ослабевает, но с боковых сторон усиливается, особенно у выступов препятствий (углы зданий, мысы береговой линии и пр.). Линии тока в таких местах сгущаются. За препятствием скорость ветра уменьшается, там имеется ветровая тень.
Очень существенно усиливается ветер, попадая в суживающееся орографическое ложе, например между двумя горными хребтами. При продвижении воздушного потока его поперечное сечение уменьшается; а так как сквозь уменьшающееся сечение должно пройти столько же воздуха, то скорость возрастает (рис. 74). Этим объясняются сильные ветры в некоторых районах; например, северные ветры во Владивостоке сильнее, чем в районах, расположенных севернее его. Тем же объясняется и усиление ветра в проливах между высокими островами и даже на городских улицах.
Перед препятствием и за ним иногда создаются так называемые наветренные и подветренные вихри.
Влияние полезащитных лесных полос на микроклиматические условия полей связано в первую очередь с тем ослаблением ветра в приземных слоях воздуха, которое создают лесные полосы. Воздух перетекает поверх лесной полосы, и, кроме того, скорость его ослабевает при просачивании его сквозь просветы в полосе. Поэтому непосредственно за полосой скорость ветра резко ослаблена. На более далеком расстоянии за полосой скорость ветра увеличивается. Однако первоначальная, неослабленная скорость ветра восстанавливается только на расстоянии, равном 40--50-кратной высоте деревьев полосы, если полоса ажурная (несплошная). Влияние сплошной полосы распространяется на расстояние, равное 20--30-кратной высоте деревьев и меньше.
39. Ускорение воздуха под действием барического градиента
Ветер возникает в связи с неравномерным распределением атмосферного давления, т. е. в связи с наличием горизонтальных разностей давления. Если бы давление воздуха в каждой горизонтальной плоскости (на каждой поверхности уровня) было во всех точках одинаково, ветра не было бы. При неравномерном распределении атмосферного давления воздух стремится перемещаться из мест с более высоким давлением в места с более низким давлением.
Мерой неравномерности распределения давления является горизонтальный барический градиент.Воздух стремится двигаться от высокого давления к низкому по наиболее короткому пути; это и есть направление барического градиента. При этом воздух получает ускорение тем большее, чем больше барический градиент. Следовательно, барический градиент есть сила, сообщающая воздуху ускорение, т. е. вызывающая ветер и меняющая скорость ветра.
Горизонтальный барический градиент есть равнодействующая сил давления, действующих в горизонтальном направлении на единицу объема воздуха (подобно тому, как вертикальный барический градиент, о котором мы говорили в главе второй, есть равнодействующая сил давления, действующих на единицу объема по вертикали). Следовательно, он является силой, отнесенной к единице объема, что видно и из его размерности, которая есть размерность силы, деленная на размерность объема:
Но в уравнениях гидродинамики и динамической метеорологии силы относят к единице массы. Для того чтобы получить силу барического градиента, действующую на единицу массы, нужно разделить величину градиента на плотность воздуха. Тогда мы получим для силы горизонтального барического градиента числовое значение - 1/?*dp/dn. Но направлению эта сила
в каждой точке барического поля совпадает с направлением нормали к изобаре в сторону убывания давления.
Только сила барического градиента приводит воздух в движение и увеличивает его скорость. Все другие силы, проявляющиеся при движениях воздуха, могут лишь тормозить движение и отклонять его от направления градиента.
Сила, рассчитанная на единицу массы, равна ускорению, сообщаемому этой силой. Следовательно, выражение -- 1/?*dp/dn представляет собой ускорение, которое получает воздух под действием барического градиента. Найдем порядок величины этого ускорения.
Если бы на воздух действовала только сила барического градиента, то движение воздуха под действием этой силы было бы равномерно ускоренным. Хотя ускорение, сообщаемое воздуху силой градиента, невелико, при более или менее длительном действии этой силы воздух получил бы очень большие и притом неограниченно растущие скорости. В действительности этого не бывает. Воздух движется, как правило, со скоростью порядка нескольких метров и, очень редко, нескольких десятков метров в секунду, причем обычно скорость ветра мало меняется в течение длительного времени. Это значит, что, кроме силы градиента, на движущийся воздух действуют другие силы, более или менее уравновешивающие силу градиента.
Отклоняющая сила вращения Земли
Мы уже знаем, что под ветром имеется в виду движение воздуха относительно земной поверхности, т. е. относительно системы координат, вращающейся вместе с Землей. В механике доказывается, что при движении любого тела во вращающейся системе координат возникает отклонение от первоначального направления движения относительно этой системы. Иными словами, тело, движущееся во вращающейся системе координат, получает относительно этой системы так называемое поворотное ускорение, или ускорение Кориолиса, направленное под прямым углом к скорости. Таким образом, поворотное ускорение не меняет величину скорости, а только меняет направление движения.
Будем под вращающейся системой координат разуметь поверхность вращающейся Земли, а под телом -- воздух. На вращающейся Земле поворотное ускорение (здесь и дальше речь идет о его горизонтальной составляющей) направлено в северном полушарии вправо от скорости, в южном -- влево.
Поворотное ускорение объясняется не тем, что есть какая-то внешняя сила, отклоняющая воздух от первоначального направления движения. На самом деле воздух стремится сохранить по инерции свое первоначальное направление движения, но не относительно вращающейся Земли, а относительно мирового пространства, относительно неподвижной системы координат. Система же координат, связанная с земной поверхностью, к которой относят ветер, поворачивается под движущимся воздухом в процессе суточного вращения Земли. Таким образом, не воздух отклоняется от первоначального направления относительно Земли, а Земля с ее параллелями и меридианами поворачивается под движущимся воздухом в противоположную сторону.
Поворотное ускорение на Земле имеет величину А =2?sin?V, где ? есть угловая скорость вращения Земли, ? -- географическая широта и V -- скорость движения (ветра). Повторим, что речь идет только о горизонтальной составляющей поворотного ускорения.
Условно можно назвать поворотное ускорение отклоняющей силой вращения Земли (отнесенной к единице массы) или силой Кориолиса.
Отклоняющая сила вращения Земли обращается в нуль у экватора и имеет наибольшую величину на полюсе. Она также пропорциональна скорости ветра Vи обращается в нуль при скорости, равной нулю. Если тело неподвижно, то никакого ускорения относительно Земли оно получить не может. Направлена отклоняющая сила под прямым углом к скорости, вправо в северном полушарии и влево в южном.
Геострофический ветерПростейший вид движения воздуха, который можно представить теоретически, -- это прямолинейное равномерное движение без трения. Такое движение при отклоняющей силе, отличной от нуля, называют геострофическим ветром. При геострофическом ветре, кроме движущей силы градиента G = - 1/?*dp/dnна воздух действует еще отклоняющая сила вращения Земли A = 2?*sin?*V. Поскольку движение предполагается равномерным, обе силы уравновешиваются, т. е. равны по величине и направлены взаимно противоположно. Отклоняющая сила вращения Земли в северном полушарии направлена под прямым углом к скорости движения вправо. Отсюда следует, что сила градиента, равная ей по величине, должна быть направлена под прямым углом к скорости влево. А так как под прямым углом к градиенту лежит изобара, то это значит, что геострофический ветер дует вдоль изобар, оставляя низкое давление слева (рис. 75). Ветер у земной поверхности всегда более или менее отличается от геострофического ветра и по скорости, и по направлению. Это происходит потому, что у земной поверхности достаточно велика сила трения, которая для геострофического ветра предполагается равной нулю. Но в свободной атмосфере, примерно начиная с 1000 м, действительной ветер уже очень близок к геострофическому, т. е. дует приблизительно по изобарам со скоростью, определяемой формулой (2). Сила трения на этой высоте и на более высоких уровнях так мала, что ею можно пренебречь. Кривизна траекторий воздуха в большинстве случаев там также мала, т. е. движение воздуха близко к прямолинейному. Наконец, хотя действительный ветер, как правило, не является вполне равномерным движением, все же ускорения в атмосфере обычно невелики. В действительности ветер в свободной атмосфере все-таки отклоняется от изобар в ту или иную сторону, но на очень небольшой угол, порядка нескольких градусов. Скорость его также хотя и близка к скорости геострофического ветра, но не в точности равна ей. Тем не менее близость действительного ветра в свободной атмосфере к геострофическому ветру дает важную возможность с достаточным приближением определять скорость и направление действительного ветра на высотах по распределению давления. Градиентный ветер Если движение воздуха происходит без действия силы трения, но криволинейно, то это значит, что, кроме силы градиента и отклоняющей силы вращения Земли, появляется еще центробежная сила,выражающаяся как С = V2/r, где V -- скорость, ar -- радиус кривизны траектории движущегося воздуха. Направлена центробежная сила по радиусу кривизны траектории наружу, в сторону выпуклости траектории. Тогда в случае равномерного движения должны уравновешиваться уже три силы, действующие на воздух, -- градиента, отклоняющая и центробежная. Допустим, что траектории движения являются окружностями (рис. 76, 77). Скорость в любой точке траектории направлена по касательной к окружности в этой точке. Отклоняющая сила направлена под прямым углом к скорости, стало быть, по радиусу окружности вправо (в северном полушарии). Центробежная сила также направлена по радиусу кривизны круговой траектории всегда в сторону ее выпуклости. Сила градиента должна уравновешивать геометрическую сумму этих двух сил и лежать на одной прямой с ними, т. е. на радиусе окружности. Это значит, что и барический градиент направлен под прямым углом к скорости. Поскольку под прямым углом к градиенту лежит касательная к изобаре, то, стало быть, ветер направлен по изобаре. Такой теоретический случай равномерного движения воздуха по круговым траекториям без влияния трения называют градиентным ветром.Из изложенного видно, что траектории в случае градиентного ветра совпадают с изобарами. Градиентный ветер, так же как и геострофический, направлен по изобарам, в этом случае уже не прямолинейным, а круговым.
В понятие градиентного ветра часто включают также и геострофический ветер, как предельный случай градиентного ветра при радиусе кривизны изобар, равном бесконечности.
Термический ветер Геострофический или градиентный ветер направлен, как мы уже знаем, по изобарам. Приблизительно по изобарам направлен и действительный ветер в свободной атмосфере. Но если с высотой меняется направление изобар, то вместе с ним должно меняться направление ветра. Равным образом и скорость ветра будет меняться с высотой в зависимости от изменения величины барического градиента. Нам уже известно, что барический градиент получает с высотой дополнительную составляющую, направленную по температурному градиенту и пропорциональную ему, а также и приросту высоты. Следовательно, и градиентный ветер получает с высотой дополнительную составляющую скорости, направленную по изотерме (имеется в виду средняя изотерма всего рассматриваемого слоя атмосферы). Эту дополнительную составляющую ?V называют термическим ветром. Ее нужно прибавить к градиентному ветру на нижнем уровне V0, чтобы получить градиентный ветер на верхнем уровнеV(рис. 78). Если барический градиент на нижнем уровне совпадает по направлению с температурным градиентом в вышележащей атмосфере, то он с высотой возрастает, не меняя направления. В этом случае изобары на всех уровнях будут совпадать по направлению с изотермами, а термический ветер будет совпадать по направлению с ветром на нижнем уровне. Ветер при этом возрастает с высотой; не меняя своего направления. V0--ветер на нижнем уровне, ?V -- термический ветер, V -- ветер на верхнем уровне, T = const -- изотерма. Если барический градиент на нижнем уровне противоположен по направлению температурному градиенту, то он будет соответственно убывать с высотой. Вместе с ним, не меняя направления, будет убывать и ветер до тех пор, пока он не превратится в нуль и не перейдет на противоположное направление. Если же градиенты барический и температурный образуют между собой угол, меньший 180°, то термический ветер будет направлен вправо или влево относительно ветра на нижнем уровне, смотря по тому, в какую сторону барический градиент отклоняется от температурного. Поэтому с высотой ветер, приближаясь к изотерме, вращается либо вправо, либо влево. В восточной (передней) части циклона, где барический градиент направлен приблизительно к западу, а температурный -- к северу, ветер, приближаясь к изотерме, с высотой вращается вправо; в тыловой (западной) части циклона -- влево. В антициклоне будет наоборот. Теория термического ветра относится, строго говоря, к градиентному ветру. Но установленные закономерности вполне оправдываются и для действительных условий в атмосфере. Влияние трения на скорость и направление ветра Скорость ветра уменьшается вследствие трения настолько, что у земной поверхности (на высоте флюгера) над сушей она примерно вдвое меньше, чем скорость геострофического ветра, рассчитанная для того же барического градиента. Например, в Берлине средняя годовая скорость ветра у земной поверхности 4,8 м/сек, а средняя скорость геострофического ветра, вычисленного по приземным барическим градиентам, 9,5 м/сек.Над морем скорость действительного ветра составляет около двух третей от скорости геострофического ветра. С высотою сила трения быстро убывает и скорость ветра поэтому возрастает, пока на высоте, близкой к 1000 м, не становится очень близкой к скорости геострофического ветра, по крайней мере всреднем. В Берлине средняя годовая скорость ветра на высоте 1000 м равна 10,2 м/сек, т. е. немногим больше, чем приземная скорость геострофического ветра. Сила трения влияет и на направление ветра. Представим себе равномерное прямолинейное движение воздуха при наличии силы трения (геотриптический ветер).Это значит, что должны уравновешиваться три силы: градиента, отклоняющая и трения (рис. 79). Так как сила трения направлена противоположно скорости, то она не лежит на одной прямой с отклоняющей силой вращения Земли. Поэтому и сила градиента, уравновешивающая сумму двух остальных сил, не может лежать на одной прямой с отклоняющей силой.
Если представить себе равномерное движение воздуха при круговых изобарах и при наличии силы трения, мы придем к аналогичному выводу. И в этом случае сила трения не совпадает по направлению с отклоняющей силой; поэтому и сила барического градиента не лежит на одной прямой с отклоняющей силой. Скорость ветра также будет отклоняться от изобар, имея составляющую, направленную по барическому градиенту.
При этом в циклоне, где градиенты направлены от периферии к центру, ветер тоже будет иметь составляющую, направленную к центру. Она присоединяется к составляющей, направленной по изобарам против часовой стрелки. Поэтому в нижних слоях циклона ветер будет дуть против часовой стрелки, втекая от периферии к центру. В антициклоне же составляющая по изобарам будет направлена по часовой стрелке, и к ней присоединяется составляющая, направленная по градиенту наружу, от центра антициклона к периферии. Ветер в нижних слоях антициклона будет дуть по часовой стрелке, одновременно вынося воздух изнутри антициклона к периферии.
Проведя линии тока в нижних слоях циклона, мы увидим, что они представляют собой спирали, закручивающиеся против часовой стрелки и сходящиеся к центру циклона. Центр циклона будет для линий тока точкой сходимости. В нижних слоях антициклона линии тока представляют собой спирали, расходящиеся по часовой стрелке от центра антициклона. Последний будет для линий тока точкой расходимости (рис. 80).
Понятно, что в южном полушарии спиралеобразные линии тока будут направлены в циклоне по часовой стрелке и в антициклоне против часовой стрелки. Но составляющая скорости ветра, нормальная к изобарам, будет и там в циклоне направлена внутрь, а в антициклоне наружу.
40. Местные ветры
Под местными ветрами понимают ветры, характерные только для определенных географических районов. Происхождение их различно.
Во-первых, местные ветры могут быть проявлением местных циркуляции, независимых от общей циркуляции атмосферы, налагающихся на нее. Таковы, например, бризы по берегам морей и больших озер. Различия в нагревании берега и воды днем и ночью создают вдоль береговой линии местную циркуляцию. При этом в приземных слоях атмосферы ветер дует днем с моря на более нагретую сушу, а ночью, наоборот, с охлажденной суши на море. Характер местной циркуляции имеют также горно-долинные ветры. Подробнее см. дальше.
Во-вторых, местные ветры могут представлять собой местные изменения (возмущения) течений общей циркуляции атмосферы под влиянием орографии или топографии местности. Таков, например, фен -- теплый ветер, дующий по горным склонам в долины, когда течение общей циркуляции переваливает горный хребет. Нисходящее движение фена, связанное с повышением температуры воздуха, является следствием именно влияния хребта на общециркуляционное течение. Влиянием орографии объясняется и бора с различными ее разновидностями.
Рельеф местности может создавать также усиление ветров в некоторых районах до скоростей, значительно превышающих скорости в соседних районах. Такие локально усиленные ветры того или иного направления также известны в разных районах под разными названиями как местные ветры. Иногда особые свойства придает местному ветру прохождение воздуха над сильно нагретой и сухой поверхностью, например пустыни, или, напротив, над сильно испаряющей (водной) поверхностью.
В-третьих, местными ветрами называют и такие сильные или обладающие особыми свойствами ветры в некотором районе, которые, по существу, являются течениями общей циркуляции. Интенсивность их проявления и их характерность для данного географического района являются следствием самого механизма общей циркуляции, самого географического распределения синоптических процессов. В этом значении называют местным ветром, например, сирокко на Средиземном море.
Кроме сирокко, известны многочисленные местные ветры в различных местах Земли, носящие особые названия, такие, как самум, хамсин, афганец и пр. Упоминания о таких ветрах можно найти в физико-географических или климатических характеристиках отдельных местностей.
Бризы
Бризами называют ветры у береговой линии морей и больших озер, имеющие резкую суточную смену направления. Днем морской бриз дует в нескольких нижних сотнях метров (иногда в слое более километра) в направлении на берег, а ночью береговой бриз дует с берега на море. Скорость ветра при бризах -- порядка 3--5 м/сек, в тропиках и больше. Бризы выражены отчетливо в тех случаях, когда погода ясная и общий перенос воздуха слаб, как это бывает, например, во внутренних частях антициклонов. В противном случае общий перенос воздуха в определенном направлении маскирует бризы, как это всегда бывает при прохождении циклонов.
Особенно хорошо выраженная бризовая циркуляция наблюдается в субтропических антициклонах, например на побережьях пустынь, где суточные смены температуры над сушей велики, а общие барические градиенты малы.
Но хорошо развитые бризы наблюдаются в теплое время года (с апреля по сентябрь) и на таких морях средних широт, как Черное, Азовское, Каспийское.
Бризы связаны с суточным ходом температуры поверхности суши
Горно-долинные ветры
В горных системах наблюдаются ветры с суточной периодичностью, схожие с бризами. Это -- горно-долинные ветры. Днем долинный ветер дует из горла долины вверх по долине, а также вверх по горным склонам. Ночью горный ветер дует вниз по склонам и вниз по долине, в сторону равнины. Горно-долинные ветры хорошо выражены во многих долинах и котловинах Альп, Кавказа, Памира и в других горных странах, главным образом в теплое полугодие. Вертикальная мощность их значительна и измеряется километрами: ветры заполняют все поперечное сечение долины, вплоть до гребней ее боковых хребтов. Как правило, они не сильны, но иногда достигают 10 м/сек и более.
Фен
Феном называется теплый, сухой и порывистый ветер, дующий временами с гор в долины. Температура воздуха при фене значительно и иногда очень быстро повышается; относительная влажность резко падает, иногда до очень малых значений. В начале фена могут наблюдаться резкие и быстрые колебания температуры и влажности вследствие встречи теплого воздуха фена с холодным воздухом, заполняющим долины. Порывистость фена указывает на сильную турбулентность фенового потока. Продолжительность фена может быть от нескольких часов до нескольких суток, иногда с перерывами (паузами).
Фены с давних времен известны в Альпах. Они очень часты на Западном Кавказе как на северных, так и на южных склонах хребта.
Продолжительный и интенсивный фен может привести к бурному таянию снега в горах, к повышению уровня и разливам горных рек и т. д. Летом фен вследствие своей высокой температуры и сухости может губительно действовать на растительность. В Закавказье (район Кутаиси) случается, что при летних фенах листва деревьев высыхает и опадает.
Но фен может наблюдаться и в арктическом воздухе, когда последний, например, перетекает через Альпы или Кавказ и опускается по южным склонам. Даже в Гренландии стекание воздуха с трехкилометровой высоты ледяного плато на фиорды создает очень сильные повышения температуры. В Исландии при фенах наблюдались повышения температуры почти на 30° за несколько часов.
При перетекании хребта в воздушном течении могут возникать стоячие волны, так называемые феновые волны, с амплитудой порядка нескольких километров, иногда приводящие к образованию чечевицеобразных облаков. Эти волны распространяются вверх до высоты в несколько раз большей, чем высота хребта.
Бора
Борой называется сильный холодный и порывистый ветер, дующий с низких горных хребтов в сторону достаточно теплого моря. Бора с давних пор известна в районе Новороссийской бухты на Черном море и на Адриатическом побережье Югославии, в районе Триеста. Сходные явления обнаружены на Новой Земле и в некоторых других местах. К типу боры относится и сарма близ Ольхонских ворот на Байкале. Достаточное сходство с борой по происхождению и проявлениям имеют норд в районе Баку, мистраль на Средиземноморском побережье Франции, от Монпелье до Тулона, нортсер в Мексиканском заливе (Мексика, Техас).
Бора возникает в Новороссийске, как и в Адриатике, в тех случаях, когда холодный фронт подходит к прибрежному хребту с северо-востока. Холодный воздух сразу же переваливает невысокий хребет. Низвергаясь вниз по горному хребту под действием силы тяжести, воздух приобретает значительную скорость: в Новороссийске в январе скорость ветра при боре в среднем выше 20 м/сек. Падая на поверхность воды, этот нисходящий ветер создает сильное волнение. При этом резко понижается температура воздуха, которая до начала боры была над теплым морем достаточно высокой.
41. Маломасштабные вихри
В условиях большой неустойчивости атмосферной стратификации, кроме обычных грозовых шквалов, могут возникать еще особые вихри с вертикальной осью, напоминающие циклоны, однако миниатюрных масштабов. Во-первых, это совсем малые пыльные вихри, во множестве возникающие над перегретой почвой в пустынях (но не только в пустынях), особенно на границах, где резко меняются свойства подстилающей поверхности. В Сахаре на площади 10 км2 таких вихрей наблюдалось иногда до 100 в день. Часты они летом на восточном Памире. Поперечник их от 1 до 100 м, высота до 1 км, скорость перемещения 20--30 км/час. В таком вихре наблюдается быстрое вращение воздуха при одновременном его подъеме вверх, так что попавшие в вихрь пыль, листья и другие предметы, увлекаются по спиральным путям.
Большее значение имеют более крупные вихри, называемые над морем смерчами, а над сушей -- тромбами. В Северной Америке тромбы называют торнадо (рис. 114).
Вихрь возникает обычно в передней части грозового облака и проникает сверху до самой земной поверхности. У смерчей диаметр вихря порядка десятков метров, у тромбов -- порядка 100--200 м, а в американских торнадо и больше (это устанавливается по ширине полосы разрушений).
Тромб виден как темный столб между облаком и землей, расширяющийся кверху и книзу, или как хобот, свисающий из облака. Это объясняется тем, что вихрь втягивает сверху облако, а снизу пыль или воду; кроме того, при сильном падении давления внутри вихря происходит конденсация водяного пара.
Вихрь перемещается вместе с облаком чаще всего со скоростью порядка 30--40 км/час. Время существования смерчей измеряется минутами, тромбов -- десятками минут, иногда несколькими часами. За это время вихрь может продвинуться над морем на несколько километров, а над сушей -- на десятки, иногда даже на сотни километров, все сметая на своем пути. Атмосферное давление в вихре сильно понижено, на десятки или даже на сотню миллибаров. Воздух вращается вокруг оси вихря, одновременно поднимаясь вверх. Скорости ветра в тромбах могут достигать 50--100 м/сек, как это можно определить по разрушениям; очень велики и восходящие скорости. Ветер при тромбе срывает и разрушает легкие постройки, переносит на большие расстояния людей и животных, ломает и вырывает с корнем деревья, прокладывая в лесах просеки. Падение давления при прохождении тромба бывает настолько большим и быстрым, что наружное давление не успевает выравняться с давлением внутри здания; давление внутри остается более высоким. Поэтому дома, попавшие в сферу действия тромба, иногда взрываются изнутри: с них слетает крыша, вылетают оконные рамы, даже разрушаются стены. Смерчи обладают меньшей разрушительной силой.