1. Описание волн и создаваемых ими на границе напряжений
2. Граничные условия и спектральные коэффициенты рассеивания
3. Волны рассеивания при падении SH-волны на кровлю низкоскоростной среды
4. Волны рассеивания при падении SH-волны на кровлю высокоскоростной среды
II. Расчётная часть
1. Падение SH-волны на кровлю низкоскоростной среды
2. Падение SH-волны на кровлю высокоскоростной среды
Список литературы
ВведениеСейсморазведка является одним из важнейших видов геофизической разведки земных недр. Она включает в себя комплекс методов исследований геологического строения земной коры, основанных на изучении особенностей распространения в ней искусственно возбуждённых упругих волн. Вызванные взрывом или другим способом упругие волны, распространяясь во всех направлениях от источника колебания, проникают в толщу земной коры на большие глубины. В процессе распространения в земной коре упругие волны претерпевают процессы отражения и преломления. Это приводит к тому, что часть сейсмической энергии возвращается к поверхности Земли, где вызывает дополнительные сравнительно слабые колебания. Эти колебания регистрируются специальной аппаратурой. Полученные записи подвергаются глубокой обработке. Анализируя и интерпретируя полученные после обработки результаты, квалифицированный специалист-геофизик может определить глубину залегания, форму и свойства тех слоёв, на поверхности которых произошло отражение или преломление упругих волн.Упругие волны делятся на объёмные и поверхностные. Традиционно в сейсморазведке наибольшее применение нашли объёмные волны: продольные (P-волны) и поперечные (S-волны). Скорости Vp всегда больше, чем Vs.В данной курсовой работе рассматривается распространение SH-волны в различных геологических условиях среды.I. Теоретическая частьПусть верхняя среда имеет скорость поперечной волны , плотность и модуль сдвига , а нижняя среда характеризуется параметрами . Напомним, что , и для сокращения письма опустим индекс поперечной волны (S) и будем обозначать , не забывая, конечно, о том, что в этом разделе речь идет о поперечной горизонтально-поляризованной волне, падающей на плоскую, горизонтальную, разрывно-резкую границу раздела.1. Описание волн и создаваемых ими на границе напряженийПусть первичная плоская SH-волна падает на границу (z = 0) под углом б и имеет фронт, параллельный оси Oy. Она описывается вектором смещения , также ориентированным вдоль Оу, но не зависящим от у:.Как отмечалось, SH-волна в выбранных условиях порождает на границе только монотипные (также SH) вторичные волны. Отраженная SH-волна распространяется вверх, в противоположном по отношению к первичной волне направлении. Поэтому в ее волновом аргументе переменная z отрицательна:Проходящая SH-волна распространяется в том же направлении, что и падающая волна (вниз), но во второй нижней среде со скоростью и под углом :.Закон Снеллиуса для SH-волн имеет вид:Горизонтальное вдоль Оу смещение SH-волн создает на границе лишь касательное напряжение:в соответствии с законом Гука, где - сдвиговая деформация в плоскости zOy:.Но SH-волна несет смещение, ориентированное вдоль Оу, и для нее .Кроме того, фронты всех волн параллельны той же оси Оу, и поэтому . Следовательно, для касательного напряжения можно записать:Напряжение, создаваемое на границе падающей волной, описывается так:Отраженная волна создает на границе касательное напряжение:Наконец, проходящая волна создает напряжение:Поскольку , для унификации обозначений будем всегда использовать угол .2. Граничные условия и спектральные коэффициенты рассеиванияИз общих трех граничных условий для компонент векторов смещения и стольких же граничных условий для компонент напряжений в условиях рассматриваемой в данном разделе задачи актуальны лишь два граничных условия: равенство суммарных у-компонент смещений (кинематическое) и равенство суммарных касательных напряжений (динамическое).На границе, при z = 0, сумма смещений падающей и отраженной волн должна быть равна смещению проходящей волны:При подстановке z=0 волновые аргументы всех трех волн равны:то есть , так как t и x - общие время и координата точки границы, а множители при х равны в соответствии с законом Снеллиуса. Поэтому первое граничное условие дает уравнение:или в спектрах:.Обратим внимание на отсутствие в первом уравнении углов падения, отражения и прохождения. Это значит, что уравнение должно быть справедливом при любом угле падения 0 ? б ? р?2.Динамическое граничное условие требует, чтобы на границе, при z=0, сумма напряжений, создаваемых падающей и отраженной волнами, равнялось напряжению, создаваемому проходящей волной:.Используя определения касательных напряжений, получим, подставляя z = 0, второе уравнение:,или в спектральной форме после сокращения на jщ:.Вместе уравнения для смещений и напряжений создают систему из двух уравнений, в которые входят спектры трех волн - отраженной, проходящей и, породившей их, первичной (падающей):Очевидно, эта система позволяет определить лишь отношения спектров вторичных волн к спектру первичной волны. Так вводятся спектральныекоэффициенты рассеяния:спектральный коэффициент отражения ,спектральный коэффициент прохождения .Как в любой линейной системе, чья спектральная характеристика определена отношением спектра сигнала на выходе к спектру входного сигнала, и в данном случае спектры “выходных сигналов” - отраженной волны (“выход 1”) и проходящей волны (“выход 2”) соотносятся со спектром “входного сигнала" - падающей волны. Поделив уравнения на и введя А и В, запишем:Решая любым способом эту простую систему уравнений, получим определения спектральных коэффициентов рассеивания:.Обратим внимание на очень удобную особенность - при любом угле падения коэффициент прохождения В на единицу больше коэффициента отражения А. Произведение скорости на плотность в сейсморазведке называют волновым сопротивлением (или акустической жесткостью): Используя определение спектральных коэффициентов рассеивания, можно записать для спектров вторичных волн:.Так как В = 1 + А, то при любом угле падения спектры волн связаны соотношением:.В том же соотношении находятся и сами сигналы - первичная и вторичные волны:.Видно, что всегда проходящая волна представляет собой сумму волн падающей и отраженной. Заметим, что для SH-волн так и должно быть для соблюдения неизменной сплошности всей среды и неразрывности контакта пород на границе.При нормальном (по перпендикуляру к границе) падении и коэффициента рассеивания равны:.Очевидно, что условием возникновения отраженной волны служит неравенство волновых сопротивлений, контактирующих на границе сред вне зависимости от того, чем это неравенство вызывается - различием скоростей или различием плотностей. Отражающей является граница с различными волновыми сопротивлениями. Могут быть “скоростные" границы, на которых изменяются скорости, могут существовать “плотностные” границы, на которых меняются плотности, и границы обоих типов являются отражающими. Наоборот, граница, на которой и , но , не является отражающей.В большинстве случаев скорости и плотности пород изменяются согласованно - более плотные породы являются и более всокоскоростными и наоборот. Исключения из этого правила довольно редки. Наиболее яркий пример - граница между залегающими над соляным куполом известняками и каменной солью. Скорость волны в известняках может быть меньше скорости в соли, тогда как плотность соли меньше плотности известняка.В зависимости от знака неравенства выделяют случаи тогда верхняя среда имеет большее волновое сопротивление, чем нижнее, и обратный случай, когда нижняя среда характеризуется большим волновым сопротивлением: . В геологическом разрезе из-за статического давление вышележащих пород волновое сопротивление обычно растете с увеличением глубины залегания. Уменьшению его на границе обычно соответствуют границы перерыва в осадконакоплении (границы разрыва).Проведем последовательный анализ поведения коэффициентов рассеивания А и В вторичных волн при изменении угле падения первичной SH-волны: 0? б ? р?2. Угол б = 0 соответствует нормальному падению волны, угол б = р?2 является теоретически возможным пределом изменения угла падения, при котором волна скользит вдоль границы.3. Волны рассеивания при падении SH-волны на кровлю низкоскоростной средыВерхняя среда более плотная и имеет большую скорость распространения волны, чем нижняя:.Из закона Снеллиуса следует, что в том же соотношении находятся углы падения и отражения и угол прохождения :.Поэтому при изменении угла падения от 0 до теоретически возможного предела угол прохождения этого предела не достигает: всегда <.Поэтому коэффициенты рассеивания при любых углах падения являются действительными числами - просто амплитудными множителями, лишь уменьшающими (при А, В < 1) или увеличивающими (при В > 1) амплитуду вторичной волны по сравнению с амплитудой первичной, падающей волны.Возможно еще одно воздействие коэффициента отражения А на отраженную волну. Если А > 0, то отраженная волна имеет тот же знак (направление) смещения, что и первичная волна. Если же А < 0, то первичная и отраженная волны имеют разные направления смещения (рис.8). Пусть, например, падающая волна имеет направление первого смещения в сторону у > 0.Рис.8Тогда при А < 0 первое смещение отраженной волны направлено в сторону у < 0. В физике такое явление называют отражением с потерей полуволны, в сейсморазведке - изменением полярности первого вступления волны. При нормальном падении и при :.Например, при км/с, г/cм, км/с, г/см коэффициенты рассеивания имеют значения: A = 0,25, В = 1,25. При нормальном падении отраженная волна имеет амплитуду, в четыре раза меньшую амплитуды первичной волны, а проходящая волна превосходит ее по амплитуде на 25%. Подстановка теоретически возможного предела изменения угла падения дает и А = - 1, а В = 0. Отраженная волна имеет ту же амплитуду, что и волна падающая, но инвертирована (обращена) по знаку смещения в сравнении с ней. Проходящая волна отсутствует, что вполне естественно. Обратим внимание на то, что при изменении угла падения от 0 до коэффициент отражения меняет знак - при б = 0 A > 0, а при б = А<0. Значит, при некотором угле падения коэффициент отражения равен 0 и отраженная волна отсутствует (!). Так как В = 1 + А, то при б = В = 1 и проходящая волна имеет в точности ту же амплитуду, что и первичная волна. Найдем этот угол из условия А = 0:.По закону Снеллиуса.Поэтому условие А = 0 принимает вид:.Отсюда, после преобразований найдем по его синусу:.При уменьшении различия физических свойств плотности пород сближаются более быстро, чем скорости. При :.В пределе, когда и . Следовательно, в рассматриваемом случае угол падения , при котором А = 0, находится в диапазоне углов падения, больших , удаляясь от этой величины в сторону больших углов по мере увеличения различий физических свойств контактирующих сред (контрастности границы).Для выбранных ранее в качестве примера параметров сред sin 0,84 и . Значит, в диапазоне углов падения от 0° до 57° коэффициент отражения А положителен, коэффициент прохождения В >1. При А = 0, В = 1, а при б > А < 0, В < 1. При углах, меньших , отраженный сигнал имеет тот же знак смещения, что и первичная волна, при угле падения, равном , отраженная волна отсутствует, а при углах, больших , она подобна первичной волне с инвертированным знаком смещения.Для выбранных параметров разреза на рис.9 приведен единый график А (б) и В (б) = 1 + А (б), снабженный двумя шкалами оси ординат со смещенными на единицу нулями. В нижней части рисунка изображены схематические импульсоиды падающей волны u (t) и вторичных волн - отраженной и проходящей для различных углов падения.Как видно из рисунка, при малых углах падения изменения спектральных коэффициентов А и В незначительны. Соответственно, малы и изменения амплитуды вторичных волн. Это является благоприятным фактором для сейсмической разведки.Рис.9С приближением угла падения к спад кривой ускоряется, отраженная волна затухает до нуля при , а амплитуда проходящей волны стремится к амплитуде волны падающей.При углах, больших , происходит стремительное падение кривой к пределам: А (б > 90°) > -1; B (б > 90°) > 0. Отраженная волна, поменяв знак смещения на обратный при , стремится к падающей волне с инвертированным знаком смещения. Проходящая волна столь же быстро затухает до нуля.4. Волны рассеивания при падении SH-волны на кровлю высокоскоростной средыНижняя среда - более плотная и имеет большую скорость распространения волны, чем верхняя:. и .В соответствии с законом Снеллиуса, угол прохождения всегда больше угла падения и равному ему угла отражения: . При изменении угле падения от нуля до теоретически возможного предела 90° угол прохождения растет быстрее и становится равным 90° при . В этом случае и ,где - критический угол падения. При таком падении проходящая волна не уходит в глубь нижней среды, а скользит вдоль границы со скоростью .Эта скользящая волна порождает в верхней низкоскоростной среде вторичную волну, называемую в сейсморазведке головной или преломленной. На регистрации таких волн основан второй метод сейсморазведки - метод преломленных волн (МПВ), - первым и основным, но вторым по времени возникновения, является метод отраженных волн (МОВ).При нормальном падении все косинусы равны единице, коэффициент отражения отрицателен, а коэффициент прохождения меньше единицы. Следовательно, в этом случае отраженная волна противоположна падающей по знаку смещений (отражение с потерей полуволны), а проходящая волна имеет меньшую амплитуду, чем волна падающая:при б = 0 и A < 0 и B < 1 и = B · u (ф) < u (ф).При критическом угле падения угол прохождения и А = 1, В = 1 + А = 2. Отраженная волна имеет ту же амплитуду, что и волна падающая, а проходящая волна по амплитуде вдвое превосходит ее:при А = 1 и В = 2 и .Видно, что и при коэффициент отражения меняет свой знак: при нормальном падении А < 0, а при А = 1 > 0, и существует угол , при котором А = 0 и , В = 1 и , - отраженной волны нет, есть только проходящая вторичная волна с амплитудой, равной амплитуде падающей волны. Синус этого угла определен ранее, но, так как , формулу для удобнее записать, умножив числитель и знаменатель подкоренного выражения на - 1:.При дальнейшем увеличении угла падения, когда , коэффициент отражения А стремительно возрастает от 0 при до 1, при одновременно и также быстро В растет от 1 до 2. Однако, более существенные изменения коэффициентов А и В и вторичных волн - отраженной и проходящей - происходят, когда угол падения становится больше критического. Если (напомним, ), в соответствии с законом Снеллиуса: и синус угле прохождения при закритическом падении становится больше единицы (?!). Это не может быть в области действительных тригонометрических функций. Определим косинус угле прохождения по обычной формуле:, так как .Синусу, большему 1, соответствует чисто мнимый косинус.Встретившись с этой неожиданной трансформацией косинуса, мы, из осторожности, записали оба возможных знака (±) корня. Установим, какой из них имеет физический смысл. Для этого вспомним описание проходящей волны (в волновой аргумент которой и входит ) и ее спектра:Подставим в последнее определение :Наличие мнимой единицы в определении косинуса выводит зависимость от z из функции запаздывания и превращает ее в амплитудный множитель . Если определить , то с ростом z (то есть, при удалении от границы и от предполагаемого источника колебаний) амплитуда гармоники частоты щ неограниченно возрастает:при z > ? . Физически это абсолютно невозможно, поэтому из двух знаков мнимого косинуса следует выбрать минус: . Тогда амплитуда вторичной волны, определяемая множителем , стремится к нулю при удалении от границы (z > ?).Однако, спектр импульсного сигнала определен на всем бесконечном интервале частот: - ? ? щ ? ? и в волновом импульсе присутствуют как гармоники с положительными частотами, так и гармоники с щ < 0. Знак минус в определении “правильно действует" только для положительных частот. Для отрицательных частот знак минус гаснет и амплитуда гармоники частоты щ < 0 неограниченно возрастает по мере удаления от границы z > ?. Это - снова нереально.Чтобы обеспечить затухание всего спектра волны как для положительных, так и для отрицательных частот, определим:,где sgn (щ) - знаковая функция частоты:.В таком определении амплитудный множитель обеспечивает затухание гармонических составляющих со всеми частотами: если щ > 0, sgn (щ) = + 1 и - функция, убывающая с ростом z, если же щ < 0, sgn (щ) = - 1 и - так же убывающая по мере удаления от границы функция.Обратим внимание на то, что с ростом абсолютного значения частоты щ затухание ускоряется - чем выше частота гармоники, тем быстрее она затухает с ростом z.В функции запаздывания спектра проходящей волны осталась лишь пространственная переменная x: . Эта функция соответствует скольжению плоской волны вдоль границы со скоростью , меньшей истинной скорости волны в нижней среде, так как . Эта скользящая с “неправильной" скоростью волна имеет амплитуду, экспоненциально уменьшающуюся с глубиной, вдоль фронта волны. Эти две особенности закритической проходящей волны дают основание для ее специального наименования - она называется неоднородной плоской волной, в соответствии с характером распределения ее амплитуды по фронту.Неоднородные плоские волны играют главенствующую роль в образовании преломленной (головной) волны, которую рассмотрим несколько позже в отдельном разделе. Здесь подчеркнем одно - все особенности неоднородной волны выявлены в результате анализа лишь волнового аргумента проходящей волны при закритическом падении плоской волны на границу раздела. Вид самой волновой функции этим анализом не затронут. Поэтому вернемся к исследованию поведения спектральных коэффициентов рассеивания и вторичных волн при закритическом падении первичной волны.Итак, установлено, что при где.Коэффициенты рассеивания А и В в этом случае описываются выражениями:Знаком тождества подчеркнута комплексная зависимость коэффициентов рассеивания от частоты, оправдывающая введенное ранее определение А и В как спектральных коэффициентов рассеивания.В числителе и знаменателе дроби, определяющей А - комплексно-сопряженные выражения: , имеющие одинаковый модуль (так как ) и противоположные по знаку аргументы. Поэтому модуль спектрального коэффициента выражения равен 1:и не зависит ни от частоты, ни от угла падения. Фазово-частотный коэффициент отражения как аргумент дроби с комплексно-сопряженными числителем и знаменателем, равен:.Действительная realA и мнимая imageA части спектрального коэффициента отражения (СКО) равны:,где.Используя формулы косинуса и синуса двойного угла (), получим выражения для действительной и мнимой частей СКО в виде:;.Действительная часть СКО не зависит от частоты, а зависимость мнимой части от нее задается множителем в виде знаковой функции частоты. Обе части СКО являются функциями угла падения. Спектральная характеристика отражения обладает всеми свойствами устойчивой линейной системы - четными амплитудно-частотной характеристикой (модулем СКО) и действительной части СКО, и нечетными фазово-частотной характеристикой (аргументом СКО) и мнимой частью СКО. При этом, четность обеспечивается отсутствием зависимости и realA от частоты, а нечетность и imageA - множителем в виде знаковой функции sgn (щ). Таким образом, комплексный спектральный коэффициент отражения может быть записан в виде:.Спектр отраженной волны разделяется на два слагаемых:.В первом слагаемом присутствует спектр первичной волны с амплитудным множителем (весом) ReA (б), независимым от частоты и меняющимся с увеличением угла падения. Во втором слагаемом - произведение двух частотно-зависимых функций - знаковой и комплексного спектра первичной волны u (jf) - с амплитудным множителем ImA (б), также изменяющимся с увеличением угла падения.Так как преобразование Фурье - линейная операция, сам отраженный сигнал также является взвешенной суммой Фурье-трансформант слагаемых своего спектра:.Здесь - результат обратного Фурье-преобразования знаковой функции частоты sgn (f), u (t) u (jf), а произведение спектров заменено сверткой Фурье-трансформант сомножителей в соответствии со спектральной теоремой свертывания функций.В теории спектров рассматривалась знаковая функция времени sgn (t) и ее спектр:.Аналогично определяется обратное Фурье-преобразование знаковой функции частоты:.Здесь появился знак минус как следствие противоположных знаков ядер прямого () и обратного () преобразований Фурье.Тогда отраженный сигнал может быть описан выражением:.Сокращая мнимую единицу и раскрывая символьную запись свертки, получим описание отраженного сигнала при углах падения, превышающих критический угол:.В скобках записано обратное Гильберт-преобразование функции u (t), описывающей первичную волну:.Таким образом, отраженный сигнал за критическим углом падения представляется взвешенной суммой падающего сигнала u (t) и его Гильберт-трансформанты :.Веса слагаемых - ReA (б) и ImA (б) - изменяются при увеличении угла падения. Соответственно, изменяется по форме и суммарный отраженный сигнал .Проведем анализ зависимости от угла падения б весовых множителей ReA (б) и ImA (б) и структуры суммарной отраженной волны при изменении б от критического угла до теоретически возможного предела 90°. Как отмечалось, при б = А () = 1 = ReA (), ImA () = 0. Отраженная волна имеет те ж форму и амплитуду, что и падающая волна: = .Как только угол падения превысит критический угол, ReA (б) стремительно уменьшается, а мнимая часть ImA (б) столь же быстро возрастает. Доля первичного сигнала в суммарной отраженной волне быстро уменьшается, и так же быстро растет доля Гильберт-трансформанты падающей волны. При некотором угле падения действительная часть спадает до 0, а мнимая - возрастает до 1:при б = ReA () = 0; ImA () = 1.Отраженный сигнал представлен только Гильберт-трансформантой первичной волны: . Угол находится из условия ReA () = 0:.Синус его равен:и не намного превышает , то есть не намного больше .Дальнейшее увеличение угла падения (б > ) приводит к перемене знака действительной части и к соответствующему инвертированию знака смещения первичной волны в суммарном отраженном сигнале. В пределе, при : ReA; ImA и . С увеличением угла падения при доля падающей волны с инвертированным знаком смещения в суммарной волне растет, а доля Гильберт-трансформанты уменьшается в пределе, при б = 90°, до 0. При этом отраженный сигнал повторяет по форме и амплитуде колебаний падающую волну с инвертированным знаком смещений. Напомним, что такой же предел был выявлен и в случае (см. раздел 8.3), что вполне естественно.Анализ закритических изменений спектрального коэффициента прохождения В и вызванных ими трансформаций неоднородных плоских волн фактически не нужен, так как имеется связь между коэффициентами рассеивания SH-волны: В = 1 + А, справедливая при любых углах падения. Для комплексных коэффициентов рассеивания А = ReA + jImA; B = ReB + jImB имеем:ReB + jImB = 1 + ReA + jImA.Видно, что А и В имеют действительные части, различающиеся на единицу, и равные мнимые части:ReB = 1 + ReA; ImB = ImA.Напомним, что связь между А и В получена из первого граничного условия (для упругих смещений):.В соответствии с ним, при любых соотношениях физических свойств контактирующих на границе сред и при любом угле падения первичной SH-волны при z = 0 проходящая волна представляет собой простую сумму падающей волны u (ф) и отраженной волны . Поэтому все трансформации отраженной волны в закритической зоне входят составной частью в изменения проходящей волны. Вне зависимости от угла падения в этой волне всегда присутствует “постоянная" составляющая - первичная, падающая на границу волна, по предположению, не меняющаяся с изменением угла падения.В заключение приведем цифровые оценки особых углов падения для границы раздела сред со следующими упругими параметрами:.Это - довольно “сильная” отражающая граница. Ей может соответствовать, например, граница между обводненной верхней средой (где скорость S-волны резко уменьшена) и “сухим” нижним полупространством.При нормальном падении (б = 0) SH-волны коэффициенты рассеивания равны:.Отраженная волна имеет амплитуду, в четыре раза меньшую амплитуды первичной волны, и инвертирована по знаку смещения. Проходящая волна ослаблена по амплитуде на четверть в сравнении с падающей волной. Для выбранных параметров сред определим отношения волновых сопротивлений ?1,667 и скоростей ?1,414 (?0,707). Используя их, найдем особые углы падения первичной волны:угол , при котором А = 0, В = 1 и = 0, = arcsin ?38°,7;критический угол , при котором А = 1, В = 2 и :.угол , при котором ReA = 0, ImA = ImB = ReB = 1 и , :?49°,4.Как видно из этих оценок, зона наибыстрейшего и наибольшего изменения спектральных коэффициентов рассеивания (СКР) и вторичных волн весьма узка: ?10,7. В интервале коэффициенты А и В возрастают на единицу: А от 0 до 1, В от 1 до 2. Затем, как только угол падения превысит критический, коэффициенты становятся комплексными. В интервале действительная часть А спадает от 1 до 0 (ReB от 2 до 1), а мнимая часть А и В возрастает от 0 до 1.Вне зоны () коэффициенты рассеивания ведут себя более спокойно. При изменении от 0 до отрицательный коэффициент отражения уменьшается (по модулю) от - 0,25 до 0. В ближней к источнику зоне, при , СКР изменяются незначительно. Соответственно, и вторичные волны в этой зоне изменяются мало.С увеличением различия свойств контактирующих на границе сред все особые точки () смещаются в сторону меньших углов падения, а интервалы между ними уменьшаются. Наоборот, для границ раздела сред с близкими упругими константами критический угол большой и углы отдалены от него.Рис.10Описание изменений СКР SH-волны иллюстрирует (рис.10), на котором построены графики и импульсоиды первичной волны и ее Гильберт-трансформанты, а также импульсоиды суммарных вторичных волн для различных углов падения. Так как ReB = ReA + 1, график снабжен второй осью ординат для со смещенной на 1 шкалой. График одновременно является и графиком .Импульсоиды вторичных волн соответствуют углам падения, отмеченным на шкале оси абсцисс стрелками.В заключение анализа отметим, что угол падения б определяет удаление х точки приема Р от точки возбуждения 0 (рис.11). Тангенс этого угла равен отношению половины удаления х/2 к эхо-глубине границы h: . Поэтому малые углы падения соответствуют ближней к источнику зоне, а большие - дальней.Рис.11Приведем оценки x/h, соответствующие особым углам для выбранных ранее параметров сред:при ?38°,7 ?1,6;при ;при ?49,4 ?2,33.Добавим еще оценку границы ближней зоны:при ?12,8 ?0,46.Таким образом, область наибольшей стабильности отраженной волны не превышает половины эхо-глубины границы. Наибольшие изменения этой волны начинаются на удалениях, в полтора раза превышающих глубину. В промежуточной зоне с ростом х изменения отраженной волны становятся все более существенными и заметными.II. Расчётная часть1. Падение SH-волны на кровлю низкоскоростной средыЗададим три случая параметров среды - укажем их в таблице:
Среда 1
Среда 2
Среда 3
V1, км/с
1,3
V1, км/с
2,0
V1, км/с
2,5
с1, г/см3
2,2
с1, г/см3
3,0
с1, г/см3
3,5
V2, км/с
1,2
V2, км/с
1,2
V2, км/с
1,2
с2, г/см3
2,1
с2, г/см3
2,1
с2, г/см3
2,1
Получим график спектрального коэффициента отражения A в зависимости от угла падения б1. В первом случае критический угол составляет б0 = 55?, во втором - близок к б0 = 70?, третий случай - б0 = 75?.
Анализируя полученные графики, видим, что по мере увеличения различий физических свойств между средами критический угол б0 увеличивается, стремясь к 45? для практически однородных сред.
Покажем изменение амплитуды отражённого сигнала, в зависимости от спектрального коэффициента отражения для Среды 2. В качестве исходного сигнала возьмём импульс Берлаге, вычисляемый по формуле . Возьмём случай f0 = 40Гц:
2. Падение SH-волны на кровлю высокоскоростной средыЗададим три случая параметров среды - укажем их в таблице:
Среда 1
Среда 2
Среда 3
V1, км/с
1,2
V1, км/с
1,2
V1, км/с
1,2
с1, г/см3
2,1
с1, г/см3
2,1
с1, г/см3
2,1
V2, км/с
1,3
V2, км/с
2,0
V2, км/с
2,5
с2, г/см3
2,2
с2, г/см3
3,0
с2, г/см3
3,5
Получим график спектрального коэффициента отражения A в зависимости от угла падения б1. В первом случае критический угол составляет б0 = 68?, во втором - близок к б0 = 38?, третий случай - б0 = 28?.
Анализируя полученные графики, видим, что по мере увеличения различий физических свойств между средами критический угол б0 уменьшается.
Покажем изменение амплитуды отражённого сигнала, в зависимости от спектрального коэффициента отражения для Среды 2. В качестве исходного сигнала возьмём импульс Берлаге, вычисляемого по формуле . Возьмём случай f0 = 40Гц:
Список литературы1. Бондарев В.И., 2000, Основы сейсморазведки. Екатеринбург: Изд-во УГГГА.2. Сейсморазведка: Справочник геофизика, 1990 / Под ред. В.П. Номоконова. М.: Недра.3. Гурвич И.И., Боганик Г.Н., 1980, Сейсморазведка. М.: Недра.