Рефераты

Проект гидрогеологических исследований пресных вод аллювиальных отложений долины реки Назарбай на стадии "оценка месторождения"

.1 Комплексная гидрогеологическая и инженерно-геологическая съемка и геоэкологические исследования и наблюдения

Комплексная гидрогеологическая съемка (ГГС) выполняется в масштабе 1:25000 на топоснове того же масштаба. Съемка должна быть комплексной, т.е. включать выполнение ГГС масштаба 1:25000 в соответствии с требованиями методического руководства [14], инженерно-геологической съемки того же масштаба и дополнительных геоэкологических исследований в соответствии с существующими требованиями [5].

В процессе проведения геоэкологической съемке выявляют антропогенно-техногенную нагрузку (все виды инженерных сооружений и их возможное влияние, наличие источников и очагов загрязнения). Геоэкологическую съемку выполняют по разведочным профилям, выбранным по топографической основе масштаба 1:25000, в соответствии с [5].

Съемка выполняется в пределах перспективного северо-восточного участка месторождения на площади S=136 км2. Конкретные виды и объемы работ в составе съемки должны быть обоснованы в соответствии с действующими методическими руководствами [5,14,17].

Особое внимание при проведении съемочных работ необходимо уделить оценке санитарного состояния участка, выявлению очагов источников возможного загрязнения, оценке техногенной нагрузки, а также изучению условий питания, распространения и разгрузки основных гидрогеологических единиц. Более подробно комплексная гидрогеологическая и инженерно-геологическая съемка рассмотрена в главе 8.

7.2 Полевые геофизические работы

Для обоснования размещения разведочных скважин на профилях, а также для изучения геолого-гидрогеологических условий по геофизическим профилям предусматривается проведение полевых геофизических работ в виде электропрофилирования методом ВЭЗ-ВП (вертикально-электрического зондирования - метод вызванных потенциалов).

Для более или менее равномерного изучения условий участка предусматривается размещение семи геофизических профилей перпендикулярно долине реки на расстоянии приблизительно 500 м. друг от друга. Профилирование проводится с выходом на коренной берег на 0,5 км в сторону от лево- и правобережья реки Назарбай (рис. 7).

Геофизическое профилирование должно быть выполнено перед буровыми работами, так как по его результатам предполагается уточнение расположения профилей скважин и размещения скважин на профилях. Наземные геофизические работы, кроме того, предназначены для определения мощности четвертичных отложений, глубины залегания УГВ, изучения литологических особенностей пород и отложений и обводненных зон трещиноватости девонских отложений. Данные работы выполняются по обще принятой методике [4,12].

7.3 Буровые работы

Учитывая незначительные размеры эксплуатационного участка, тип будущего водозабора (линейный ряд скважин на расстоянии 100 м. от реки), а также экономический фактор, считаем целесообразным располагать поисково-разведочные скважины по одному продольному профилю (по линии проектируемого водозабора) и по одному поперечному, проходящему через центр будущего водозабора.

Определим число скважин на профилях. На продольном профиле закладываем одну скважину в центре (место пересечения продольного профиля с поперечным), а затем равномерно с расстоянием 500 м. друг от друга. Таким образом, должно быть заложено на продольном профиле 7 скважин. На поперечнике скважины располагаются следующим образом: одна на пересечении профилей, в правобережной части расстояния между скважинами 500-700 м. друг от друга, в левобережной через 1000 м. При этом на поперечнике необходимо заложить по одной скважине вне долины с выходом на коренной берег на 250-500 м. На правобережье в неогеновых отложениях, на левобережье в девонских отложениях для изучения ВЗЭТ. Таким образом, на поперечнике 5 скважин, общее число скважин составит 12. Схема скважин и профилей показана на рисунке 7.

Глубина скважин должна обеспечить полное вскрытие аллювиального водоносного горизонта. Кроме того, следует иметь в виду необходимость бурения опытных и наблюдательных скважин специального опытного куста, предназначенного для проведения опытной кустовой откачки.

Рис. 7. Общая схема размещения поисково-разведочных скважин и профилей

7.4 Геофизические исследования в скважинах

Геофизические исследования являются составной частью гидрогеологических исследований, будут проводиться во всех скважинах. Будем применять методы электрокаротажа (метод кажущегося сопротивления-КС и естественных потенциалов-ПС, резистивиметрия-РК), расходометрического каротажа. В результате геофизических исследований в скважинах, изучается геологическое строение разрезов и детальное расчленение по литологическим особенностям пород, выделяются водоносные и водоупорные пласты с определением их мощности, оцениваются емкостные и фильтрационные свойства водоносных пород, оценивается общая минерализация и температура подземных вод. Для оценки и контроля технического состояния гидрогеологических скважин и их соответствующий технологической подготовки будем использовать резистивиметрию и расходометрию.

Геофизические исследования будем выполнять поэтапно (1 этап -предшествующие основным гидрогеологическим исследованиям, 2 этап - одновременно с гидрогеологическими исследованиями). По каждому этапу составляются схематические карты и разрезы, которые являются основой для корректировки направленности, видов и объемов дальнейших гидрогеологических работ. Данные работы выполняются по обще принятой методике [11,12].

7.5 Опытно-фильтрационные работы

Опытно-фильтрационные работы (ОФР) предназначены для изучения фильтрационных и емкостных свойств продуктивного пласта и их изменение в плане и разрезе. ОФР включают проведение одиночных опытных откачек из всех поисково-разведочных скважин продольного и поперечного профилей. Всего таких откачек должно быть проведено - 12. Одиночная откачка должна проводится на одну ступень дебита (максимально возможный водоотбор), длительность 3-5 сут. Наблюдения должны вестись как за дебитом, так и за понижением, исходя из необходимости построения графика временного прослеживания , ожидаемое понижение уровня составит 3-5 м.

Из части скважин (каждая вторая скважина продольного профиля) должна быть проведена одиночная опытная откачка на 2-3 ступени понижения с целью получения графика . При проведении откачек особенно на 2-3 ступени понижения следует фиксировать вынос песчаных частиц. Одиночные откачки проводятся по обще принятой методике [1].Одиночные откачки на 2-3 ступени понижения организуются в скважинах 1,3,5,7, таким образом, число одиночных откачек 4. Методика проведения опытно-кустовой откачки рассмотрена детально в главе 8.

7.6 Топогеодезические работы

Выполняются в необходимом объеме для топографического обеспечения поисково-разведочных гидрогеологических работ. Важнейшей из задач топогеодезических работ является вынесение буровых скважин в натуру и их планово-высотная привязка. Эти работы должны включать нивелировочные ходы, теодолитные ходы. Ввиду отсутствия данных о реперах точный объем работ определить не представляет возможности. Работы выполняются по общепринятой методике [18,19,20,21].

7.7 Отбор проб воды и горных пород

Выполняются с целью получения физико-химических показателей и бактериологического состояния воды и вмещающих горных пород, физико-механические и водно-физических свойств горных пород. Отбор проб воды осуществляется в соответствии с ГОСТ 2874-82. Работы по отбору проб воды и горных пород проводятся в соответствии с общепринятой методикой [7,17].

7.8 Лабораторные работы

Их задачей является установление: физических, химического свойств, газового и бактериального состава подземных и поверхностных вод, минерального и гранулометрического состава, а также физических и водных свойств пород. Лабораторные работы проводятся по ранее отобранным пробам воды и пробам пород. Объемы лабораторных работ определяются в соответствии с общепринятой методикой [7,17]. Рассмотрены в главе 8.

7.9 Гидрологические и гидрометрические работы

Задачами гидрогеологических и гидрометрических работ проводимых при гидрогеологической съемке, являются: изучение взаимосвязи подземных и поверхностных вод измерение расходов и выяснение физических свойств и химического состава воды и твердого стока. В результате этих работ устанавливают следующие данные, размер и глубину водотока и водоема, литологический состав и водоносность пород слагающих дно и берега водотока, режим поверхностных вод, расход поверхностных вод на различных участках водотока, разгрузку подземных вод, паводки (их длительность и периодичность) и т.д. Работы выполняются минимум в течение года. Данные работы выполняются по общепринятой методике[15].

7.10 Изучение режима поверхностных и подземных вод

Режим и баланс подземных вод позволяют дать количественную характеристику процессов формирования подземных вод, выявить основные закономерности пространственно-временного изменения их количества, качества и свойств, и использовать эти закономерности, для обоснования путей для наиболее рационального освоения и охраны подземных вод, состава мероприятий по борьбе с их вредным воздействием и способов управления их режимом. Данные наблюдений за режимом баланса подземных вод обеспечивают высокую достоверность и обоснованность выполняемых инженерных прогнозов, а также значительно повышают экономическую эффективность гидрогеологических исследований. Необходимо изучить поверхностные воды р. Назарбай, как одного из источников формирования ЭЗПВ (режим, качество, уровни, расходы, разгрузку подземных вод, паводки). Изучение режима поверхностного стока следует выполнять как минимум в течение года, при этом режим поверхностных вод должен быть изучен в увязке с режимом подземных вод. Данные работы выполняются по общепринятой методике [17,22].

7.11 Опытно-миграционные работы

В результате ОМР, определяются параметры миграции, как по водоносному горизонту, так и по зоне аэрации (в связи с возможным загрязнением).

К параметрам миграции относятся следующие показатели:

активная пористость;

полная пористость;

эффективная пористость;

сорбционные свойства пород;

действительная скорость движения подземных вод.

По ЗА необходимо иметь следующею информацию:

литологический состав;

мощность;

параметры влажности (мм,е,п);

коэффициент влагопроницаемости (кв);

глинистость;

сорбционные и защитные свойства пород.

ОМР можно проводить в виде лабораторных (отбор проб) или полевых работ. ОМР можно совместить с откачкой. ОМР выполняется по общепринятой методике.[13]

7.12 Обследование действующих водозаборов

Этот вид работ проводится, если вблизи будущего водозабора находится действующий водозабор. Тогда по действующему водозабору собирают всю информацию полезную для будущего водозабора, а именно:

· в каком году построен, сколько эксплуатируется, общий срок эксплуатации, данные о ходе эксплуатации (аварии, неполадки и т.п.)

· суммарный водоотбор, изменения водоотбора в течение времени (Q=f(t)), поведение уровней по всем скважинам (наблюдательным, эксплуатационным и режимным) - для уточнения параметров водоотбора

· изменение качества воды во времени, за счет чего были изменения качества

· какие ЗСО предусмотрены, их содержание, наличие санитарных мероприятий, размеры

· влияние водоотбора на различные элементы окружающей среды: на поверхностные воды, на осушение грунтовых вод, на изменение мелиоративного состояния, на развитие ЭГП (суффозия), на физико-механические свойства пород

· технико-экономические показатели этого водозабора

· техногенную обстановку в зоне действующего водозабора

Обследования действующего водозабора выполняются по общепринятой методике.[3,17]

7.13 Санитарное обследование участка

В основные задачи этого изучения входят оценка возможных очагов и источников загрязнения подземных вод продуктивного горизонта, обоснование ЗСО будущего водозаборного сооружения. Перед этим должны быть выполнены рекогносцировочное обследование территории, прилегающей к площади разведочного участка (см. гл.7.1.). Обследование проводится с представителями местных органов санитарно-эпидемиологической службы, по выбранным профилям в результате рекогносцировки.

7.14 Камеральные работы

Являются завершающим этапом гидрогеологической съемки, которая заключается в окончательной обработке материалов. В состав камеральных работ входят: обобщение и анализ собранных материалов, комплексных исследований; подсчет разведанных запасов подземных вод и их категоризация. Осуществляется увязка и обобщение, составляется комплекс необходимых карт и разрезов, а также окончательный отчет по выполненной гидрогеологической съемке. Отчет составляется в соответствии с существующими методическими и инструктивными материалами. Камеральные работы выполняются по общепринятой методике [7,17].

8. Методика выполнения отдельных видов проектируемых работ

Ниже детально рассматривается методика проведения некоторых видов проектируемых исследований: опытно-фильтрационные работы (кустовая откачка), комплексная гидрогеологическая и инженерно-геологическая съемка и лабораторные работы.

8.1 Методика проведения опытной кустовой откачки

В понятие методики проведения опытной кустовой откачки входит:

выбор вида откачки;

местоположение и схема опытного куста;

продолжительность откачки;

интенсивность и характер возмущения при откачке;

контроль проведения опытной кустовой откачки и ее документация;

обоснование конструктивных особенностей опытной и наблюдательных скважин.

Выбор вида откачки

О выборе вида откачки уже говорилось в главе 7.5. Предусмотренная опытная кустовая откачка предназначена для решения следующих задач:

· определение гидрогеологических параметров продуктивного пласта (,,,,);

· определение параметров взаимодействия подземных и поверхностных вод (,,);

· определение опытным путем срезок уровней на различные расстояния при эксплуатации скважины с дебитом откачки, об этом дает представление прямая ;

· оценка качества воды продуктивного горизонта и выявление возможных тенденций его изменения.

Местоположение и схема опытного куста

Ввиду определенности расположения будущего водозабора (см.рис) (продольный профиль на расстоянии 100 м. от реки) считаем необходимым разместить специальный куст опытных скважин в центре будущего водозабора как в наиболее нагруженной его части, т.е. в месте пересечения продольного и поперечного профилей. Такое расположение позволит одновременно определить расчетные параметры продуктивного пласта и параметры взаимосвязи подземных и поверхностных вод.

В условиях когда является контуром питания , принимают обычно двулучевую схему опытного куста. Один луч встречный поперечный реке, второй - параллельно реке. Правила нумерации скважин: на поперечном луче нечетные номера, на параллельном - четные.

Существуют определенные рекомендации по размещению наблюдательных скважин куста у реки [1]. В частности, на каждом из лучей целесообразно располагать не менее 2-3 наблюдательных скважин, при этом ближайшая скважина находится вне зоны прискваженных деформаций, т.е. на расстоянии . В нашем случае .

На параллельном луче самая удаленная скважина должна обеспечиваться понижением не менее 0,3 м., при этом . Используя эти рекомендации, наметим предварительную схему расположения скважин опытного куста, которая потом будет уточнена на основе проведения разведочных расчетов, имитирующих откачку.

Начнем обоснование размещения скважин по лучам, начиная с поперечного. Примем ближайшую наблюдательную скважину №1 на расстоянии r1=20 м, чтобы минимизировать влияние несовершенства центральной скважины. Вторую скважину №3 располагаем на урезе реки, т.е. . Возле скважины №3 в русле реки должна быть расположена мерная рейка, по которой будет измеряться уровень воды в реке. Скважина №5 будет располагаться на другом берегу реки на расстоянии равном и фиксировать реакцию реки на откачку. На расстоянии предусматривается дополнительная скважина №7 между скважинами №1 и №3. Для обеспечения получения информации о развитии воронки депрессии в сторону коренного берега расположим скважину №9 на обратном луче, на расстоянии .

На параллельном луче размещаем 2 наблюдательные скважины №2 и №4, соответственно, на и . Для наблюдения за естественным режимом УГВ в процессе откачки будем использовать ближайшую поисково-разведочную скважину №6 находящуюся на расстоянии много больше превышающей радиус влияния , что обеспечивает изучение естественно режима.

Предложенная предварительная схема размещения скважин опытного куста (рис.) является ориентировочной и подлежит уточнению на основе разведочных расчетов.

Разведочные расчеты могут быть произведены для 2-х периодов:

· нестационарной фильтрации;

· стационарной фильтрации, которая наступит через .

Выполним разведочные расчеты для периода квазистационарной фильтрации. Расчеты будут выполняться по формуле напорного потока, т.к. понижение УГВ при откачке вряд ли будут превышать .

Расчетная формула будет иметь вид:

, где , .

Для выполнения разведочных расчетов по имеющейся формуле необходимо задаться дебитом центральной скважины. Ввиду отсутствия сведений о реальных дебитах разведочных скважин примем дебит центральной скважины по ее водозахватной способности:

,

где ,

.

Для опытной скважины принимаем и , тогда .

В итоге .

Кальматации нет в процессе кратковременной откачки никакого влияния факторов (типа кальматации, коррозии и др.) на скважины не будет. Такой дебит скважин может быть обеспечен насосом типа ЭЦВ, в частности ЭЦВ-12-375-30.

Выполненные расчеты по формуле представлены в таблице.

0.2

20

30

40

50

60

70

80

90

100

3.09

1.26

1.09

0.98

0.89

0.82

0.76

0.71

0.66

0.62

Обосновывая схему расположения опытного куста будем ориентироваться на т.н. эталонную откачку, при которой понижение в центральной скважине должно быть не менее 3-5 м., понижение в самой удаленной скважине должно не менее 0,3-0,5 м.; разница в понижении в соседних наблюдательных скважинах не менее 0,2-0,3 м.

Анализ таблицы показывает, что все требования эталонной откачки соблюдены в нашем случае: , разница понижениями в удаленных скважинах на лучах

Поэтому приведенную схему следует считать правильной.

Для того, чтобы иметь возможность определения параметров (ГГП) как по формулам стационарной фильтрации так и по квазистационарной, проверим длительность пребывания самой удаленной наблюдательной скважины в условиях квазистационарной фильтрации. Она должна быть не менее 5, где определяется по формуле:

Для скважины №4 сут, тогда 5, что недостаточно для получения ГГП. Эта скважина будет находится в квазистационарном режиме 7,5 сутр, что не достаточно для построения графика временного прослеживания . Необходимо переместить СКВ. №4 ближе к центру, например, . Тогда , а 5, что вполне достаточно для построения представительного графика временного прослеживания. Т.о. скорректировали предварительно намеченную схему размещения скважин куста, переместив скв. №4 с параллельного луча на расстояние 80 м. Данная схема размещения скважин будет считаться окончательной.

Схема расположения опытного куста приведена на рисунке 8.

Продолжительность откачки

Откачка из куста скважин у реки рекомендуется проводить до стабилизации условия фильтрации. В рассмотренных условиях стабилизация условий наступит через 10 суток (по критерию), чтобы убедиться, что стабилизация не является ложной или кажущейся, откачку следует продлить на 2-3 суток. Таким образом, общая продолжительность откачки составляет 13 суток.

Интенсивность и характер возмущения про откачке (Q)

Интенсивность возмущения была обоснована выше и составляет .

Такой дебит может быть обеспечен электронасосом ЭЦВ, в частности ЭЦВ-12-375-30.

Характер возмущения при откачке - это постоянство дебита, которое должно регулироваться. Допустимое отклонение про дебиту составляет 5-10% от его среднего значения.

Контроль проведения откачки и ее документация

Контроль проведения откачки заключается в ведении журнала установленной формы с регистрацией в нём основных параметров откачки (T,Q,S,t и др.)

В процессе проведения откачки необходимо вести контроль за изменением уровня во всех наблюдательных и опытных скважинах и за дебитом центральной скважины. Частота замера уровня и дебита должна быть больше в начале откачки и постепенно уменьшаться по мере ёё проведения. Ориентировочно принимается следующая частота замеров уровней и дебита: 1е часы откачки - 2-3 замера в час, в середине откачки 4-6 раз в сутки, в конечной части откачки - 1-3 раза в сутки.

В процессе проведения откачки рекомендуемая частота должна быть скорректирована исходя из темпов снижения уровня в скважине. Желательно обеспечить совпадение частоты замеров уровня и дебита, особенно в середине и в конце откачки.

В случае перерыва в откачке по техническим причинам, если в скважине достигнуты понижения порядка 0,3-0,5 м. Необходимо реализовать наблюдения за восстановлением уровня в тех скважинах, в которых понижения достигнуты.

Частота замеров при восстановлении уровня уменьшается по мере восстановления.

По восстановлению УГВ после откачки получают достоверные значения параметров. ввиду меньшего влияния искажающих факторов.

Для качественного контроля откачки, помимо её документации составляются следующие графики:

· хронологические графики изменения уровня по всем наблюдениям и центральной скважины ;

· логарифмические графики прослеживания по всем скважинам , , .

Для контроля качества воды процессе проведения откачки предусматриваются отборы проб воды на полный химический и бактериалогический анализ: в начале, в середине и в конце откачки. Отбор проб воды проводится в соответствии с правилами. Пробы воды на бактериалогический анализ отбираются работниками СЭС.

Конструктивные особенности скважин куста

Учитывая, что естественная мощность водоносного горизонта не большая . Опытная скважина (центральная) должна быть совершенной как по степени, так и по характеру вскрытия горизонта. Глубина скважины определяется по формуле:

В соответствии с приложением 6, табл.77. СНиП -2.31 -74 фильтровая часть центральной скважины должна обладать минимальным фильтровым сопротивлением.

Для водоносного горизонта представленного гравийно-галечными отложениями целесообразно использовать трубчатый фильтр с круглой или щелевой перфорацией с водоприемной поверхностью из проволочной обмотки или из штампованного стального листа.

Для трубчатых фильтров т круглой перфорацией диаметр отверстий принимается равным . Диаметр фильтра должен составлять не менее 0,4 м.

Для выбора диаметра колонны используется справочник по бурению [ ]. В соответствии с табл. 5.1. для фильтровой колонны выбираем обсадную трубу с условным диаметром равным 407 мм. наружный диаметр трубы составляет 406,4 мм. при толщине стенок 9 мм., внутренний диаметр фильтровой колонны будет равен 388,4 мм.

Для составления колонны труб длиной 37 м., будут использованы муфты с внешним диаметром равным 432 мм. Для кондуктора выбираем трубы с условным диаметром - 508 мм., толщиной стенок 11мм и с внутренним диаметром 486 мм. Зазор между двумя колоннами труб составляем 51 мм, что вполне достаточно. Затрубное пространство между фильтровой колонной и кондуктором должны быть зацементированы.

Конструкция скважины представлена на рисунке 9.

Что касается конструкции наблюдательных скважин, то следует отметить следующее. При откачке образуется небольшая, по глубине 3-5 м. и достаточно обширная по площади воронка депрессии, т.к. мощность горизонта , а понижение в наблюдательных скважинах варьируется в диапазоне от 1,26-0,62. В этим условиях наблюдательные скважины должны быть несовершенны по степени вскрытия пласта. Глубина вскрытия горизонта наблюдательных скважин принимаем 3-5 м. Диметр наблюдаемых скважин в соответствие с работой (ОФР Шестакова) должен соответствовать типу исследуемого уровнемера. При небольшой глубине залегания УГВ целесообразнее использовать уровнемер типа хлопушка. При использовании хлопушки диаметр наблюдательных скважин примерно равен 50 мм [10]. Все наблюдательные скважины должны быть однотипны по конструкции.

Рис. 9. Конструкция центральной скважины

8.2 Оценка экологического состояния территории при наличии на нем поселка и животноводческой фермы

При наличии на имеющейся территории поселка и животноводческой фермы будет существовать угроза загрязнения подземных вод, а именно нитратное загрязнение. Данный вид загрязнения будет происходить за счет большого скопления фекальных отходов от большого количества голов скота на ферме. Так как на территории центрального Казахстана преобладает резко континентальный климат и зимы там суровые, в это время скот будет загоняться в специальные загоны, соответственно все отходы будут накапливаться. Весной, во время активного снеготаяния продукты гниения фекальных скоплений, такие как , и др. могут проникать в грунтовые воды, которые используются для водоснабжения поселка. Также животноводческая ферма имеет такую особенность как концентрированный неприятный запах, который может причинять неудобства проживания рядом с такой фермой людям, которые никак не связаны с животноводством. Следовательно, необходимо расположить ферму на удаленной территории от поселка и с таким принципом, чтобы преобладающая роза ветров была направлена в сторону от поселка. Но так как сведений о направлении ветров отсутствуют, придется располагать ориентировочно.

Нашей главной задачей является определение расположения поселка и фермы, так чтобы не происходило загрязнения воды в реке, которая является источником для водоснабжения поселка и фермы. Для этого необходимо проанализировать имеющиеся геологические, гидрогеологические и климатические условия.

Рассматривая геологические условия можно сказать, что подходящими породами, которые могли бы обладать наименьшими фильтрационными и проницаемыми свойствами являются отложения неогеновой системы, представленные водоупорными глинами, которые распространены в центральной и южной части территории.

Зная рельеф местности и предполагая, что разгрузка вод происходит в реку (то есть поток подземных вод направлен к реке), необходимо расположить ферму как можно дальше от реки, чтобы загрязненные воды поверхностного стока смогли по пути к реке частично очиститься за счет растительности, которая имеет потребность в нитратах и поглощает их.

Таким образом самым благоприятным местом для расположения поселка и фермы является центральная часть территории, в пределах которой широко распространены неогеновые отложения, имеющие в этом месте, (по данным ближайшего к этому месту разреза по линии А-Б), мощность около 50 м и защищающие пресные воды аллювиальных отложений долины реки Назарбай с двух ее берегов.

Расположения поселка и фермы изображены на рисунке 10.

8.3 Методика проведения геофизических исследований

Выбранный участок для расположения поселка и фермы необходимо исследовать с помощью геофизических методов, которые должны будут решить следующие задачи:

· уточнение мощности водоупорных глин, на которых будет располагаться поселок и ферма;

· определение глубины до уровня грунтовых вод (при данном расположении, вод, содержащихся в девонских отложениях).

Для уточнения мощности водоупорных глин, на которых будет располагаться поселок и ферма основным методом достижения поставленных целей будет являться метод вертикальных электрических зондирований (ВЭЗ). Данный метод применяют при решении многих геологических, инженерно-геологических, гидрогеологических и других задач, связанных с определением мощности и глубины залегания различных по удельному электрическому сопротивлению пластов горных пород. Метод эффективен при горизонтальном или слабонаклонном залегании пластов [20].

При выполнении электрических зондирований часто применяют симметричную четырехэлектродную установку AMNB. Величина кажущегося удельного электрического сопротивления рк, вычисляемая при выполнении ВЭЗ, зависит от распределения в нижнем полупространстве пород с различным удельным сопротивлением и взаимного расположения питающих и приемных электродов.

В методе ВЭЗ при неизменном положении центра установки О постепенно увеличивают расстояние между питающими электродами А и В. Электрический ток проникает на большую глубину, и на значение р начинает оказывать влияние электрическое сопротивление пород, залегающих на этой глубине.

Если на глубине h расположена граница раздела между породами с удельными сопротивлениями р1 и р2 то при малых разносах питающих электродов АВ породы с сопротивлением р2 не будут оказывать влияние на распределение электрического поля и, следовательно, на замеряемые значения рк. С увеличением разноса питающих электродов АВ растет плотность тока во второй среде с сопротивлением рР что ведет к изменению значения рк. При достаточно больших разносах АВ большая часть тока протекает в среде с сопротивлением р2, в результате чего рк определяется в основном сопротивлением этой среды, а влияние первого горизонта с сопротивлением рг пренебрежительно мало. Таким образом, при измерении рк установкой с изменяющимся расстоянием между питающими электродами при неизменном положении ее центра изучают изменение удельного электрического сопротивления горных пород с глубиной.

При обработке результатов измерений строят кривые ВЭЗ -- графики зависимости рк от половины разноса АВ к= f (AB/2)). Эти кривые строят в прямоугольных координатах на бланке с логарифмическим масштабом по обеим осям. По осям координат откладывают десятичные логарифмы чисел: по оси абсцисс -- величину полуразноса питающих электродов: АВ/2, по оси ординат -- значения рк. Для сохранения одинаковой точности построения графиков расстояния между точками по оси АВ/2 должны сохраняться постоянными.

При большом отношении AB/MN разности потенциалов между приемными электродами М и N становятся трудно измеримыми из-за их малой величины. Поэтому периодически увеличивают разносы MN. При переходе с одного разноса MN на другой принято повторять замеры на двух соседних точках, что обеспечивает лучшее сопряжение отрезков кривых, полученных для каждого значения MN. Одновременно это является контролем качества выполняемых полевых работ. В местах перехода от одного значения разносов MN на другое график ВЭЗ терпит разрыв, возникающий из-за неоднородности поверхностных отложений около приемных электродов. Значения рк при одинаковых АВ и разных MN должны отличаться на величину допустимой методической погрешности. Повторяющиеся участки кривых не должны пересекаться.

Интерпретация результатов ВЭЗ может быть качественной и количественной. Оба приема интерпретации взаимно дополняют друг друга.

Качественная интерпретация заключается в сопоставлении зондирований по форме кривых рк и изображении пространственных закономерностей в распределении тех или иных особенностей их формы в виде карт типов кривых р^, карт продольной проводимости или поперечного сопротивления, карт и разрезов изоом рк, на различных разносах АВидр.

Количественную интерпретацию кривых ВЭЗ производят с целью определения параметров геоэлектрических горизонтов, слагающих разрез: мощностей и удельных электрических сопротивлений (hp рр Н2, р2 и т.д.). Решение этой задачи осуществляется сравнением эмпирических кривых зондирований с теоретическими кривыми. Это сравнение можно выполнять с использованием альбомов палеток ВЭЗ либо на ЭВМ.

По результатам количественной интерпретации строят геоэлектрические разрезы, которые по числу пластов с различными удельными электрическими сопротивлениями принято делить на двухслойные, трехслойные, четырехслойные и многослойные. Наиболее простыми являются двухслойные разрезы.

Участок, в пределах которого будет применяться данный метод, примем равным 2х2 км

Таким образом, необходимо выполнить электрические зондирования по квадратной сети. Максимальная величина полуразносов питающих электродов АБ/2 будет составлять 250 м. Азимут разносов будет совпадать с азимутом профилей. Профили необходимо ориентировать с севера на юг, нумерация их будет возрастать в восточном направлении. Нумерация точек ВЭЗ будет возрастать в южном направлении. Число пикетов на каждом профиле - 10, количество профилей - 5.

По полученным данным в ходе проведения зондирования будут построены графики рк= f (AB/2), по которым и будут определены мощности неогеновых водоупорных глин.

Для определения глубины до первых от поверхности грунтовых вод, которые содержатся в девонских отложениях, будет использоваться методом сейсморазведки преломленными волнами. Возможность применения сейсморазведки для определения глубины залегания уровня грунтовых вод основана на существенном различии скоростей распространения продольных волн в зоне аэрации и полностью водонасыщенных породах. В рыхлых терригенных отложениях переход от неполного водонасыщения к полному сопровождается скачкообразным возрастанием скорости продольных волн. Граница между водонасыщенными и рыхлыми песчано-глинистыми неводонасыщенными породами является хорошей преломляющей границей для продольных волн [20].

При интерпретации результатов сейсморазведки строят годографы: графики зависимости времен прихода упругих волн к сейсмоприемникам от расстояния «пункт возбуждения» -- «точка приема».

Чаще всего в инженерной сейсморазведке годографы строят по временам первых вступлений упругих волн (коррелируют волну, пришедшую к сейсмоприемнику первой).

Времена прихода волн снимают с сейсмограмм.

Если рассматривать пример сейсмограмм (разрез карбонатных пород перекрытых песчаными), то на сейсмограммах с 24 каналами четко видно, что после возбуждения упругой волны (этот момент регистрирует первый сейсмоприемник, t= 0) на восьми других каналах по первым вступлениям регистрируется прямая волна (упругая волна, пришедшая к сейсмоприемникам по первому слою). Форма волны хорошо сохраняется на всех каналах. Начиная с десятого сейсмоприемника, на сейсмограмме в первых вступлениях регистрируется упругая волна, преломленная на первой границе. Эта волна обгоняет прямую, т.к. скорость в среде ниже преломляющей границы значительно выше, чем в первом слое. Первой преломляющей границей является уровень грунтовых вод. Скорость преломленной волны в полностью водонасыщенных песчаных отложениях составляет ~ 1400- 1600 м/с. На 21--24 каналах в первых вступлениях регистрируется волна, преломленная на кровле карбонатных отложений. Скорость ниже второй преломляющей границы ~ 3000-4000 м/с. По значениям, снятым с сейсмограмм, строят годографы прямой и преломленных упругих волн.

Для повышения достоверности получаемых результатов в сейсморазведке применяют системы наблюдений с перекрытием (один и тот же участок преломляющей границы изучают несколько раз). При применении методики первых вступлений часто бывает достаточно использовать систему однократного перекрытия (систему встречных годографов). Примеры таких годографов (прямого Г1и встречного Г2) приведены на рис. 11, а.

Рис. 11. Построение разностного годографа (а) определение средней скорости в верхнем слое (б)

Выделение преломляющей границы, связанной с уровнем фунтовых вод, достаточно уверенно осуществляется по следующим признакам:

при горизонтальной поверхности наблюдений годографы продольной волны tр, преломленной на УГВ, имеют прямолинейную форму;

кажущиеся скорости, определенные по встречным годографам, близки между собой;

граничная скорость Vr - волны t изменяется в сравнительно узких пределах: от 1450 м/с при залегании УГВ на глубине первых метров в песчано-глинистых породах до 2500--2700 м/с при залегании УГВ в крупнообломочных породах (гравии и песчанике) на глубине десятки метров.

Чем сильнее возрастают скорости упругих волн на какой-либо границе, тем проще она выделяется по сейсмическим данным.

Одним из приближенных способов определения глубины до преломляющей границы является способ средних пластовых скоростей с использованием параметра .

Ошибка в определении глубин этим способом обычно не превышает 10%, даже при слабой контрастности сред.

Для определения глубины до преломляющей границы необходимо знать:

-- Vr -- скорость распространения упругой волны, проходящей вдоль
преломляющей границы;

-- V -- среднюю скорость упругих волн в горных породах, перекрывающих преломляющую границу;

-- параметр t0 - значение времени на ПВ.

При использовании встречной системы наблюдений граничную скорость определяют по методике разностного годографа. Разностный годограф строят на участке перекрытия встречных годографов следующим образом: измеряют отрезок t от прямой ТТ, соединяющей взаимные точки годографов, до годографа Г2 и откладывают этот отрезок вверх от другого годографа Г1 в той же координате X и т.д. В результате получают точки, соответствующие разностному годографу tраз (см рис. 11, а).

По разностному годографу определяют граничную скорость Vr:

где -- скорость, вычисленная по наклону разностного годографа.

Значение средней скорости в горных породах, перекрывающих преломляющую границу, обычно определяют по результатам сейсмокаротажа. Приближенная величина может быть получена по годографам первых вступлений. Средняя скорость до первой преломляющей границы принимается равной скорости прямой волны -- годограф Г1 (рис. 11, б). Для определения средней скорости в слоях, перекрывающих вторую преломляющую границу, поступают следующим образом; из пункта возбуждения упругих колебаний 0 проводят прямую ON через точку пересечения N годографов Г1 и Г2, соответствующих первой и второй преломляющим границам. Средняя скорость до интересующей нас границы определяют по угловому коэффициенту прямой ON и т.д.

Значения t0 могут быть определены путем построения линии t0 на участке перекрытия встречных годографов либо по одиночному годографу. В этом случае годограф преломленной волны, соответствующий изучаемой границе, продолжают до пересечения с осью времен и ордината, отсекаемая им, принимается за t0 (см. рис. 11,а).

Глубину залегания к-й преломляющей границы Нк определяют по формуле:

,

где - средняя скорость упругих волн в слоях, перекрывающих к -ю преломляющую границу;

- граничная скорость вдоль к-й границы;

- значение t0 для к-й границы.

Таким образом расстояние между сейсмоприемниками составит 5 метров при длине расстановки 115 м. Работы будут выполнятся по встречной системе наблюдений с вертикальным возбуждением колебаний и вертикальными сейсмоприёмниками.

Заключение

В результате выполнения курсового проекта было произведено:

· формулирование целей и задач проектируемых работ;

· построение рабочей разведочной модели объекта работ, был определен тип МПВ, его характерные особенности, сложность гидрогеологических условий, степень изученности и перспективы для дальнейших разведочных работ участка;

· определен состав и качество необходимой гидрогеологической, геоэкологической и другой информации, нужной для решения всех поставленных задач на стадии «Оценка месторождения»;

· установлены и обоснованы основные направления выполнения работ на стадии «Оценка месторождения», уточнены положения и размеры участка для дальнейших оценочных и разведочных работ;

· определены состав и объёмы предстоящих гидрогеологических, геоэкологических и других исследований, обоснован оптимальный комплекс гидрогеологических и других исследований;

· обоснование проекта опытно-фильтрационных работ (ОФР), другие виды работ рассмотрены в постановочном плане (без размещение, соображения по методике их проведения).

В главе 3 был произведен анализ геолого-гидрогеологических условий района работ и обоснована рабочая гипотеза. Был выбран участок для дальнейших исследований. В главе 6 определили состав и качество необходимой гидрогеологической информации. В 7 главе обосновали виды и объемы проектируемых работ. Методика выполнения была рассмотрена в главе 8, для следующих видов работ: ОФР, оценка экологического состояния территории при наличии на нем поселка и животноводческой фермы и методика проведения геофизических исследований.

Список литературы

Боревский Б.В. и др. Оценка запасов подземных вод. Киев, Высшая школа, 1989.

Требования к ЭГиК масштаба 1:25000-1:50000. М., ВСЕГИНГЕО, 1990.

СанПин 2.1.4.1074-01, Госкомсанэпиднадзор РФ, М., 2002.

Климентов П.П., Кононов В.М. Методика гидрогеологических исследований. М., Высшая школа, 1989.

Плотников Н.И. Поиски и разведка пресных подземных вод. М., 1985.

Бочевер Ф.М., Лапшин Н.Н., Орадовская А.Е. Защита подземных вод от загрязнения. М., Недра, 1979.

Башкатов Д.Н., Роговой В.Д. Бурение скважин на воду. М., Недра, 1979.

Методические рекомендации по каротажу гидрогеологических скважин. М., Недра, 1979.

Мелькановицкий И.М., Ряполова В.А., Хордикайнен М.А. Методика геофизических исследований при поисках и разведке месторождений пресных подземных вод. М., Недра, 1981.

Брусиновский С.А. О миграционных формах элементов в природных водах. Л., Гидрометеоиздат, 1963.

Методическое руководство по производству гидрогеологической съемки в масштабах 1:50000 и 1:25000. М., Госгеолтехиздат, 1962.

Методические рекомендации по проведению гидрогеологической и инженерно-геологической съёмки масштаба 1:50000 для целей мелиорации применительно к условиям Центрального Казахстана. М., ВСЕГИНГЕО, 1982.

Лучшева А.А. Основы гидравлики и гидрометрии. М., Недра, 1989.

Вода питьевая. Гигиенические требования и контроль за качеством. ГОСТ 2874-82.

Справочное руководство гидрогеолога. Под ред. Максимова В.М. М., 1979.

Баканова В.В. Геодезия. М., Недра, 1980.

Геодезия. Справочное руководство. Под ред. Бонч-Бруевича. М.,изд. Наркомхоза, 1939.

Инструкция по топогеодезическим работам при инженерных изысканиях для промышленного, сельскохозяйственного, городского и поселкового строительства. М., Стройиздат, 1974.

Наставление по топографическим съемкам в масштабах 1:10000 и 1:25000. Ч. 2, М., Недра 1965.

Основы геофизических методов исследований. Учебное пособие. М.: «ЩИТ-М», 2005, - 144 с.

Страницы: 1, 2


© 2010 Современные рефераты