Рефераты

Проходка горных выработок

p align="left">Процесс бурения, осуществляемый различными способами, включает две, как правило, совмещаемые во времени операции: отделение от забоя, сопровождаемое разрушением породы, и удаление из шпура или скважины горной мелочи (буровой шлам). В условиях геологоразведочных работ породу при бурении разрушают с помощью передачи на забой шпура (скважины) через буровой инструмент механических нагрузок. Этот вид бурения называют механическим. При механических способах бурения на забой передаются сжимающие нагрузки, вызывающие в породе напряжения сжатия, которые трансформируются в напряжения сдвига, среза, растяжения. Когда величина этих напряжений превышает предел прочности, порода на забое разрушается.

Вторая операция -- удаление шлама из шпура (скважины) -- осуществляется водой, воздушной струей или механически.

На горноразведочных работах применяют механические способы бурения шпуров и скважин. При механических способах бурения порода разрушается твердым породоразрушающим инструментом. Механические способы бурения подразделяют на ударно-поворотный, ударно-вращательный, вращательно-ударный и вращательный.

Ударно-вращательный способ бурения характеризуется тем, что удары наносят по непрерывно вращающемуся буровому инструменту, разрушающему забой шпура. Данный способ может применяться при крепости пород f = 6-20.

Вращательно-ударный способ бурения сочетает вращательный и ударный способы. Коронке, находящейся под давлением, придается независимое вращение и одновременно по ней наносятся удары. Разрушение породы происходит за счет ее скалывания при вращении коронки. Этот способ бурения целесообразно использовать в породах крепостью f = 4-14.

При вращательном бурении разрушение забоя шпура производится за счет сжатия, раздавливания и скалывания лезвиями инструмента (резца), вращающегося при одновременном действии осевого давления. Вращательное бурение может применяться в породах крепостью f ? 12 в зависимости от типа бурильной машины вращательного действия.

Ударно-поворотный способ бурения характеризуется тем, что порода разрушается в результате последовательных ударов по забою шпура бурового инструмента (штанги и буровой коронки), совершающего возвратно-поступательные движения. Перед каждым следующим ударом инструмент поворачивается на некоторый угол, чем обеспечивается разрушение породы по всей площади шпура. Этот способ бурения может использоваться для пород крепостью f=4~20.

В некоторых случаях в труднодоступных районах, куда трудно доставить технику и при малом объеме работ в породах V - XIII категорий применяется ручное бурение шпуров. Ручное бурение бывает только ударно-поворотным.

2.3.3. Машины для бурения шпуров

Шпуры бурят с использованием компактных, транспортабельных бурильных машин относительно небольшой мощности. Эти особенности бурильных машин обеспечивают удобство их эксплуатации в горных выработках; в условиях разведки месторождений они облегчают перевозку оборудования к месту производства работ и позволяют бурить шпуры при небольшой энерговооруженности.

Бурильные машины оборудуют индивидуальными силовыми приводами -- пневматическими, электрическими или встроенными в корпус двигателями внутреннего сгорания.

При значительных объемах бурения шпуров в определенных горно-геологических условиях становится целесообразным использование более мощного и производительного оборудования -- бурильных установок, имеющих пневматические или электрические силовые приводы.

Исходя из рассмотренных выше способов бурения шпуров бурильные машины разделяют на следующие классы:

1) ударно-поворотного действия -- перфораторы;

2) вращательного действия -- сверла;

3) вращательно-ударного действия -- колонковые перфораторы и бурильные головки, монтируемые преимущественно на специальных бурильных установках.

При разведке месторождений полезных ископаемых шпуры в подавляющем большинстве случаев бурят перфораторами и сверлами. В геологоразведочных партиях наиболее распространены пневматические перфораторы. В особых условиях проведения горных выработок при отсутствии достаточно мощных энергетических источников применяют перфораторы с двигателями внутреннего сгорания, называемые мотоперфораторами (бензоперфораторы).

Пневматический перфоратор представляет собой поршневую машину ударно-поворотного действия. По конструктивным особенностям механизма поворота различают перфораторы с зависимым и независимым приводами; по способу применения -- переносные, телескопные и колонковые; по массе -- легкие (до 18 кг); средние-- (20--25 кг) и тяжелые (>30 кг).

Пневматические перфораторы массой до 33 кг называют переносными. Пневматические переносные перфораторы -- ПП предназначены для бурения шпуров диаметром 30--50 мм в забоях горизонтальных и наклонных (нисходящих) выработок. Бурение шпуров переносными перфораторами осуществляется с использованием простейших поддерживающих устройств (пневмоподдержек) или ручной подачей (поэтому переносные перфораторы ранее назывались ручными). Переносные перфораторы применяют в подземных и открытых горных выработках для бурения горизонтальных, наклонных и направленных вниз шпуров.

В подземных выработках для бурения направленных вверх шпуров применяют телескопные перфораторы (ПТ). Масса телескопных перфораторов, используемых в геологоразведочных выработках, достигает 50 кг. Телескопные перфораторы представляют собой конструктивно единое целое перфоратора и пневмоподдержки, соединенных между собой стяжными болтами. Перфораторы этого типа предназначены для бурения восстающих шпуров и скважин, диаметром до 85 мм.

Колонковые перфораторы, имеюще значительную мощность и массу 100 кг и более, используют для бурения шпуров и скважин в крепких породах диаметром до 40--85 мм в горизонтальных выработках. Их устанавливают на специальных распорных колонках, манипуляторах или буровых каретках. Подача колонковых перфораторов на забой производится автоматическими винтовыми или цепными податчиками.

Мотоперфораторы используют для бурения нисходящих или наклонных шпуров преимущественно в процессе проходки открытых горных выработок. Масса мотоперфораторов составляет 30 кг.

Менее распространены при проведении разведочных выработок сверла, основная причина этого -- затрудненность или невозможность бурения шпуров в крепких породах. Электрические сверла разделяют на ручные (масса до 24 кг) и колонковые, монтируемые на распорных колонках, манипуляторах или буровых каретках (масса колонковых электрических сверл достигает 130 кг).

Пневматические сверла практически не применяют при проведении горных выработок в процессе геологоразведочных работ, они используются в основном на угольных шахтах, в выработки которых выделяются горючие газы и пыль, образующие с воздухом взрывоопасные смеси,

Сверла с двигателями внутреннего сгорания (мотобуры) применяют при проведении открытых горных выработок в мягких некрепких породах; эти ручные бурильные машины имеют массу до 15 кг.

При больших объемах проходческих работ, осуществляемых в крепких породах, в процессе проведения подземных горизонтальных выработок применяют мощные пневматические машины вращательно-ударного действия, монтируемые на бурильных установках.

Буровой инструмент для ударно-поворотного бурения шпуров состоит из штанги и съемной буровой коронки (рис 9, 10). Штанги буров изготовляют из пустотелых стальных стержней шестигранного или круглого профиля длиной от 400 до 3000 мм, диаметром 32-46 мм.

Таблица 4

Технические характеристики пневматических перфораторов

Марка перфоратора Масса, кг Энергия удара, Дж Частота ударов, мин -1 Расход воздуха, м3/мин Глубина бурения, м Усилие подачи, Н

Переносные

ПП36В 29,4 36 2300 2,8 2-4 0-1200

ПП54В 30,5 54 2300 3,5 2-4 0-1200

ПП63В 33,0 63 1800 3,5 2-4 0-1200

Телескопные

ПТ-29М 38 50 2400 3,3 До 8 1000-2000

ПТ-36М 47 90 2600 4,5 До 15 1000-2000

Колонковые

ПК-60 60 90 2500 9,0 До 25 До 7000

ПК-75 75 150 2600 13,0 До 50 До 10 000

2.3.4. Типы шпуров, расчет количества шпуров, размещение шпуров на забое

При проведении горных выработок шпуровым методом выделяют следующие основные параметры взрывной отбойки: число шпуров, их глубину и диаметр, коэффициент использования шпура и удельные расходы ВВ.

Типы шпуров по назначению.

При проходке горных выработок в твердых породах важно правильно определить количество шпуров, расположить их на забое и соблюдать определенную последовательность при их взрывании.

Действие ВВ на горную породу в значительной степени отличается при условие одной или нескольких обнаженных поверхностей на забое.

Наличие дополнительной обнаженной поверхности способствует большему эффекту взрыва по сравнению с первым случаем. Поэтому при проходке многих горных выработок на забое создается вруб - первичное углубление, которое дает дополнительное обнажение поверхности и ослабляет породу.

Различают врубовые, отбойные и оконтуривающие шпуры.

Врубовые шпуры предназначены для создания дополнительной обнаженной поверхности, облегчающей полезную работу другим - отбойным шпурам. Они всегда взрываются первыми. Количество врубовых шпуров обычно 3-6 штук в зависимости от крепости пород. В некоторых случаях в очень крепких породах в центре забоя бурятся 1-2 холостых шпура, которые не имеют заряда и играют роль дополнительной обнаженной поверхности.

Схема размещения и ориентировка врубовых шпуров на забое называется типом вруба.

По принципу действия врубы разделяются на отрывающие (клиновые, пирамидальные), в которых шпуры наклонены к оси выработки и разрушающие (прямые, призматические, щелевые) с ориентировкой шпуров параллельно оси выработки.

Врубы первой группы боле распространенные, но их глубина лимитируется шириной выработки (В).

l шп = (0,7-0,9)В

Углы наклона зависят от крепости пород. Породы с коэффициентом крепости по Протодьяконову 15-20 бурятся с максимальным наклоном - 600, менее крепкие (15-5) - 650 град и от 1до 5 с углом не более 700.

Шпуры второй группы позволяют осуществлять заходки большей величины.

l шп = (1,1-1,3)В

Расстояние между отбойными несколько больше, чем между врубовыми, так как последние работают в более трудных условиях (монолитный массив пород). Отбойные шпуры в свою очередь, хотя и могут взрываться одновременно, по своему расположению делятся на вспомогательные и оконтуривающие. Первые расположены ближе к врубовым и расширяют вруб, а задача оконтуривающих шпуров - обеспечить сохранение заданных параметров сечения горной выработки. Для этого в крепких породах они бурятся с наклоном с выходом нижней части за пределы контура выработки, в средних же по крепости породах они могут буриться вертикальными или наклонными, но при этом остаются в контуре выработки.

На основе практических данных установлена область применения различных врубов. В массивных породах наиболее эффективным является пирамидальный вруб в центральной части забоя. Клиновый вруб применяют в слоистых породах. Прямые врубы (щелевой и призматический) могут применяться в выработках малых сечений.

Вспомогательные шпуры производят отбойку породы в сторону боковой обнаженной поверхности (вруба). Они взрываются вслед за взрывом врубовых шпуров и способствуют расширению врубовой полости.

Оконтуривающие шпуры, взрываемые последними, предназначены для придания выработке запроектированной формы и размеров поперечного сечения.

В забоях выработок небольшого сечения вспомогательные шпуры иногда не бурят, а их функции выполняют оконтуривающие шпуры.

Расчет количества шпуров.

Существуют несколько способов расчета, все эмпирические. Наиболее часто расчет ведется на основе формулы проф. М.М. Протодьяконова, связывающей коэффициент крепости пород и площадь забоя.

Указанное неравенство может служить для проверки результата расчета по вышеприведенной формуле М.М. Протодьяконова. Если неравенство не выполняется, то количество шпуров изменяется таким образом, чтобы площадь забоя, приходящаяся на один шпур соответствовала указанным значениям.

Размещение шпуров на забое горной выработки.

После определения количества шпуров на забое выработки необходимо составить схему размещения шпуров на забое горной выработки. При размещении шпуров следует учитывать следующие правила: 1 - шпуры размещаются по площади забоя относительно равномерно, чтобы была обеспечена равномерная работа каждого шпура; 2 - минимальное расстояние между зарядами должны быть таким, чтобы исключалась возможность детонации; 3 - размещение шпуров должно обеспечивать отбойку породы в контурах выработки согласно проекта с наибольшим КИШ; 4 - необходимо обеспечить равномерное дробление породы до необходимой крупности кусков.

Схема расположения шпуров представляет изображение их пространственного положения на трех взаимно перпендикулярных плоскостях, одна из которых совпадает с плоскостью забоя.

Порядок составления схемы следующий.

Вначале, исходя из особенностей горных пород, определяется тип вруба, количество врубовых шпуров и углы их наклона к плоскости забоя. Затем определяется количество отбойных шпуров, необходимых для поддержания при проходке проектного сечения горной выработки и углы их наклона к плоскости забоя. Оставшееся количество шпуров считается вспомогательными.

Размещение шпуров при проходке канав.

Количество шпуров определяется по формуле Протодьяконова. Шпуры располагаются в один или два ряда параллельно оси канавы под углом 900. В некоторых случаях шпуры бурятся с наклоном к поверхности забоя в зависимости от условий залегания пластов горных пород. При двухрядовом размещении шпуры располагаются относительно друг друга в шахматном порядке.

2.3.5. Расчет длины шпуров в подземных выработках

От длины шпуров будет зависеть скорость проходческих работ. Короткие шпуры снижают производительность работ, но их длина ограничена шириной выработки. Кроме того, она ограничена и длительностью рабочей смены. Чтобы обеспечить эффективность работ, необходимо учесть все выше обозначенные ограничения и условия. Существует много эмпирических способов расчета глубины шпуров. Нами будет рассмотрены только некоторые из них.

В общем случае глубина шпура, ориентированного перпендикулярно поверхности забоя, связана с длиной заходки следующей зависимостью (рис. 15):

l зах / l шп = К.И.Ш.

Где l зах - длина заходки, l шп - глубина шпура, К.И.Ш. - коэффициент использования шпура, равный 0,7-0,95, равен отношению глубины получаемой при взрыве воронки к глубине шпура.

Формулу используют для проверки максимальных глубин шпуров полученных другими способами.

Минимально допустимая глубина шпура принимается равной 0,5 м. В шпурах меньшей глубины резко снижается эффективность использования взрывчатых веществ.

Для наклонных шпуров дополнительно рассчитывается длина, которая необходима для определения общей длины буров для перфоратора (рис. 16).

3. Взрывные работы при проведении горноразведочных выработок

Разработка новых эффективных и экономичных способов проведения горно-разведочных выработок -- одно из основных направлений технического прогресса. Взрывной метод характеризуется высокой производительностью и экономичностью, поэтому он нашел широкое применение при проведении горно-разведочных выработок, особенно в условиях скальных пород. Вместе с тем проведение горно-разведочных выработок взрывным способом требует от исполнителей достаточно высокой теоретической и практической подготовки в области управления энергией взрыва.

Разнообразие горнотехнических условий и физико-механических свойств горных пород создает определенные трудности при проведении горно-разведочных выработок, что лишний раз доказывает необходимость глубоких знаний в области взрывного дела у руководителя таких работ. На практике технология ведения буровзрывных работ при проведении горно-разведочных выработок мало чем отличается от условий проведения выработок при разработке месторождений полезных ископаемых. Однако при проведении горно-разведочных выработок необходимо учитывать те их особенности, которые связаны с возможными изменениями физико-механических свойств горных пород и направлением проведения таких выработок. Поэтому, прежде чем перейти к технологическим вопросам проведения горно-разведочных выработок, необходимо дать основные понятия о взрыве и ВВ, рассмотреть виды химических реакций и процессы, протекающие при взрывчатом превращении.

3.1. Понятие о взрыве и взрывчатых веществах

Впервые задача физической сущности взрыва была поставлена М.В. Ломоносовым. В работе «О природе и рождении селитры», написанной в 1748 г., он дает определение взрыва как очень быстрого выделения значительного количества энергии и большого объема газов. В современной интерпретации взрывом называют процесс быстрого сверхзвукового физического или химического превращения вещества за счет прохождения по нему детонационной волны, сопровождающейся переходом потенциальной энергии этого вещества или продуктов его превращения в кинетическую. Существуют три формы химических превращении ВВ: медленное химическое превращение, горение и детонация.

Медленное химическое превращение протекает при низких температурах по всему объему вещества. При горении передача тепла от слоя к слою происходит в результате теплопроводности. Скорость горения может быть от долей сантиметра до десятков метров в секунду. Взрыв, распространяющийся с постоянной и максимальной для данного ВВ скоростью, называют детонацией

Взрывчатыми веществами называют смеси и химические соединения, способные под влиянием внешнего воздействия (нагрева, удара, трения и т. д.) взрываться, т. е. чрезвычайно быстро превращаться в другие соединения с образованием большого количества тепла и газов. Следовательно, взрывчатое превращение -- это быстро протекающая в ВВ химическая в основном окислительная реакция, сопровождающаяся образованием большого количества газов и значительным выделением тепла, в результате чего газы нагреваются до высокой температуры и в месте нахождения ВВ развивается высокое давление.

Скорость взрывчатого разложения внутри заряда ВВ может быть разной и в значительной степени определяет разрушительное действие взрыва на окружающую среду. Характерный признак ВВ -- наличие в его составе всех необходимых для протекания реакций окисления элементов. Взрывчатые вещества подразделяются на химические соединения, в молекулах которых содержатся горючие элементы и окислитель, и смесевые, представляющие механическую смесь твердых, жидких или газообразных компонентов. Наибольшее распространение получили взрывчатые смеси из твердых веществ

Свойства ВВ.

Работоспособность ВВ - характеризует способность взрывчатого вещества производить механическую работу по разрушению и отрыву породы от массива. Она зависит от объема газов и количества тепла, образующегося при взрыве. Практически работоспособность ВВ определяют взрывом заряда весом 10 Г в свинцовой бомбе. О работоспособности судят по изменению объема канала бомбы в кубически? сантиметрах. Например, работоспособность ВВ в 370 см3 говорит о том, что объем канала бомбы после взрыва навески данного ВВ в 10 Г увеличился на 370 см3.

Бризантность ВВ - характеризует способностью взрывчатого вещества производить дробящее действие (дробление породы на большие или меньшие обломки). Зависит она, главным образом, от скорости взрыва. О бризантности судят по величине усадки свинцового цилиндра в результате взрыва навески ВВ в 50 Г. Бризантность выражается в мм.

Чувствительность ВВ - это степень их восприимчивости к различным внешним воздействиям: тепловому (огонь, искре, повышение температуры), механическому (удар, трение), а также к передаче детонации. Это чрезвычайно важное свойство обусловливает основные меря безопасности при обращении с взрывчатыми материалами, особенно при их перевозке и хранении. Способность взрывчатых веществ к передаче детонации используется не только в самих взрывных работах, но и при испытании ВВ для определения их качества.

Чувствительность ВВ к различной воздействиям зависит от природы взрывчатого вещества, физического состояния, температуры, плотности, влажности, наличия примесей и т.д. Чувствительность ВВ может быть повышена или понижена за счет добавок соответствующих веществ.

Кумуляция. Эффект этого явления подобен выпуклой линзе, фокусирующей свет. Если заряд на своем торце имеет выемку подобной формы, то при взрыве он способен оказывать усиленное действие в направлении фокусирования. При этом не происходит суммарного увеличения энергии, и лишь концентрация ее (подобно швейной игле, на кончике которой при небольшом усилии на небольшую площадь ткани возникает мощное давление). Такое направленное действие заряда называется кумулятивным. Оно объясняется тем, что при взрыве заряда, имеющего кумулятивную выемку в торце, противоположном детонатору, взрывные газы части заряда, прилегающей к выемке, разлетаясь вначале по нормали к поверхности выемки, встречаются на ее оси и образуют мощную тонкую кумулятивную струю. Скорость кумулятивной струи намного превышает скорость детонации, достигая 10 000-12 000, а иногда и 30 000 м/сек, а давление превышает 100 000 кГ/см2, чем и объясняется ее пробивное действие. На эффективность кумулятивного действия оказывают влияние скорость детонации заряда, форма и размер выемки, оболочка выемки и расстояние заряда от преграды. Чем больше скорость детонации, тем сильнее кумулятивный эффект. Наилучшими будут конические и полусферические формы выемки. Картонная оболочка выемки ухудшает, а стальная улучшает кумулятивный эффект.

Кислородный баланс. Относительная доля кислорода в составе ВВ, является их важным показателем, так как от этого зависит качественный состав, образующихся при взрыве газов, в том числе и появление ядовитых. К последним относятся угарный газ - СО и окислы азота. Чистый азот и углекислота не относятся к ядовитым газам, но повышенное их содержание снижает относительную долю кислорода, нормальное содержание которого для человека в обычных условиях составляет около 21%. Поэтому в подземных выработках применяют ВВ с так называемым нулевым кислородным балансом. В них кислорода достаточно для полного окисления углерода и превращения его в углекислоту, но не слишком много, чтобы окислять азот. При недостатке кислорода ВВ имеют отрицательный баланс, а при избытке - положительный.

3.2. Классификация ВВ по составу компонентов

Промышленные ВВ представляют собой в основном смеси природных взрывчатых веществ и добавок. Последние меняют свойства ВВ, так, чтобы обеспечить их эффективность и безопасное обращение с ними в определенных условиях применения, например во влажных условиях забоя выработки, или в шахтах, опасных по газу и пыли. Большинство взрывчатых химических веществ представляет собой химические соединения из углерода, кислорода, водорода и азота в различных соотношениях, то есть элементов - окислителей и восстановителей, которые при энергетическом инициировании (получении дополнительной энергии из вне) способны вступать между собой в быстропротекающую реакцию.

Нитроглицериновые ВВ.

К ним относятся динамиты, детониты, победиты, в основе которых имеются нитроглицерин или нитроглицерин с нитрогликолем.

Нитроглицерин С3Н5(NO3)3 - жидкое маслянистое ВВ слегка желтоватой окраски. Нитроглицерин ядовит - проникая через кожу в органы дыхания в организм, вызнает сильные головные боли и сердцебиение.. Он весьма чувствителен к огню и механическим воздействиям. Горение нитроглицерина зачастую переходит во взрыв. Работоспособность его составляет 550 см3, бризантность - 20 мм, скорость детонации непостоянна и колеблется от 1165 до 9150 м/сек.

Нитроглицерин имеет очень большой недостаток - замерзает при температуре +13°. Замерзший нитроглицерин особенно опасен в обращении. Температуру замерзания можно значительно снизить с помощью добавок нитро-гликоля.

Нитроглицерин, из-за большой опасности в обращении с ним, самостоятельно для взрывных работ не используется, но входит, как один из компонентов, в состав многих взрывчатых веществ.

Нитрогликоль С2Н4(NO3)2 - представляет собою бесцветную прозрачную жидкость, работоспособность равна 650 см3, бризантность-30 мм, скорость детонации - 8300 м/сек, температура замерзания равна минус 22,6°. Он легко смешивается с нитроглицерином и понижает температуру замерзания последнего. Нитрогликоль по сравнению с нитроглицерином менее чувствителен к механическим воздействиям, однако в качестве промышленного ВВ в чистом виде также. не применяется

Динамиты - это смесь нитроглицерина, нитрогликоля с поглотителями - древесной мукой, калиевой, натриевой или аммиачной селитрой и т.д. Для повышения химической стойкости динамитов в их состав, в качестве стабилизаторов, вводят небольшие добавки мела или соды. Качества динамитов в значительной мере определяются свойствами основного компонента - нитроглицерина. Так, например, температура замерзания обычного динамита равна +10°. Замерзшие динамиты очень опасны в обращение применять их для взрывных работ нельзя, запрещается такая разминать их, ломать, резать, сникать бумажную оболочку. Оттаивание динамитов, как правило, производится в ящиках в отапливаемом помещении при температуре порядка +20° или в специальных сосудах-отогревателях. Для снижения температура замерзания динамитов в их состав вводят добавки нитрогликоля, 62% труднозамерзающий динамит имеет температуру замерзания -20°. Цифры в процентах перед маркой динамита свидетельствуют о процентном содержании в нем нитроглицерина, нитрогликоля или их суммы.

Кроме того, динамиты обладают и еще весьма существенными недостатками: при длительном хранении они "стареют", у них проявляется экссудация. Экссудацией называется способность динамитов выделять на поверхности патронов содержащийся в них нитроглицерин ."Старение" динамитов выражается также и в увеличении их плотности, что приводит к частичной или даже полной потере ими взрывчатых свойств. Эти динамиты становятся столь же опасны в обращении, как и исходные вещества в их чистом виде. Патроны динамитов с явными признаками экссудации запрещено применять для целей взрывных работ. Отсюда следует, что нарушать сроки и условия хранения нитроглицериновых ВВ ни в коем случае нельзя. Для большинства из них срок хранения равен 6-8 месяцам. ВВ, срок хранения которых истек, подлежат уничтожению.

К достоинству динамитов относят их высокую работоспособность, бризантность и особенно водоустойчивость, что позволяет использовать в породах любой крепости, во влажных и обводненных забоях.

Динамиты выпускаются только в патронированном виде. Применяются они сравнительно редко та как стоимость в 2-3 раза выше стоимости аммиачно-селитренных ВВ, но в ряде случаев их применение более эффективно, чем аммонитов.

Детониты - это промышленные ВВ, в состав которых входят нитроглицерин /от 6 до 15%) и аммиачная селитра. Они могут применяться для взрывных работ в самых различных условиях, кроме шахт, опасных по газу или пыли.

Победиты - промышленные ВВ, в состав которых входят нитроглицерин /в небольшом количестве, аммиачная селитра, тринитротолуол и соль в качестве пламегасителя. Добавка в небольшом количестве нитроглицерина не сообщает взрывчатому веществу всех отрицательных свойств, присущих динамитам, в то же время она существенно повышает способность к детонации и некоторые другие полезные свойства. Соль вносится для снижения температуры взрыва, что позволяет использовать победиты в выработках, опасных по газу или пыли.

Детониты и победиты выпускаются в патронированном виде, по хранению, перевозке и обращению с ними они приравниваются к аммиачно-селитренным ВВ, однако к их химической стойкости предъявляются более высокие требования, чем к аммонитам.

Несомненным достоинством детонитов и победитов при всей их гигроскопичности является то обстоятельство, что при увлажнении их они еще некоторое время не теряют восприимчивости к детонации и поэтому могут применяться во влажных забоях.

Нитросоединения.

Нитросоединения в отличие от механических смесей представляют собой химические взрывчатые вещества, образующиеся в результате взаимодействия органических или неорганических соединений с азотной кислотой в присутствии серной или уксусной кислоты. Некоторые ВВ этой группы применяются в качестве добавок к аммонитам /тротил, гексоген/, другие в детонирующих шнурах или в качестве инициирующего ВВ в капсюлях-детонаторах. В качестве рабочих ВВ, как правило, не применяются.

Тротил /тол, тринитротолуол/ С6Н2(NO2)3 * СН3 - представляет из себя порошок или пластинчатые чешуйки желтого цвета. Кроме того, тротил может выпускаться в прессованном виде или в виде отдельных литых зарядов.

Тротил мало чувствителен к влаге, удару и трению, легко загорается и спокойно горит. Работоспособность его равна 360 см3, бризантность 15 мм, скорость детонации 7000 м/сек. При взрыве тротил выделяет много ядовитых газов, поэтому в чистом виде его можно применять только на поверхностных работах.

Динитронафталин С10Н6(NO2)2 - слабое взрывчатое вещество, представляющее из себя порошок серо- желтого цвета. Употребляется при изготовлении некоторых сортов аммиачно-селитренных рабочих ВВ /динафталит/.

Тетрил С6Н2(NO2)3 * СН3 *NO3 - мелкокристаллическое ВВ бледно-желтого цвета. Его работоспособность равна 380 см3, бризантность - 22 мм, скорость детонации - 7200-7700 м/сек. Тетрил не боится влаги, а по своим взрывным свойствам превосходит тротил, но, из-за большой чувствительности к механическим воздействиям, самостоятельно для взрывных работ не применяется. Тетрил обладает большой восприимчивостью к детонации и хорошо ее передает другим ВВ. Поэтому его применяют при изготовлении капсюлей-детонаторов как вторичное инициирующее ВВ.

Тен /пентрит/ С2Н2(NO3)4 - кристаллический порошок белого цвета. Работоспособность тэна равна 500 см3, бризантность 25-26 мм, скорость детонации - 8200-8700 м/сек. Тен влаги не боится. Применяется он, как и тетрил, в качестве вторичного инициирующего ВВ при изготовлении детонаторов, а также, при изготовлении детонирующего шнура.

Гексоген С3Н6(N4O2)3 - кристаллический порошок белого цвета. Гексоген химически устойчив, не боится влаги, по чувствительности к механическим воздействиям близок к тетрилу, но значительно превосходит его по мощности. Так, работоспособность гексогена равна 520 см3, бризантность - скорость детонации - 8300 м/сек. Применяется для изготовления детонирующих шнуров, детонаторов /как вторичное инициирующее ВВ/ и некоторых сортов мощных аммонитов.

Гремучая ртуть Нg (СNO)2 - мелкокристаллическое вещество белого или серого цвета. Сухая гремучая ртуть весьма чувствительна к огню и механическим воздействиям. При взрыве наносит сильный и резкий удар по окружающей среде. Поэтому она применяется в качестве первичного инициирующего ВВ при изготовлении детонаторов.

Гремучая ртуть не очень чувствительна к влаге, но при длительном хранении под водой впитывает ее до В055. Такая гремучая ртуть от огня и удара не взрывается, но .может взорваться от взрыва сухой гремучей ртути. В присутствии влаги гремучая ртуть способна взаимодействовать с некоторыми материалы, образуя весьма опасные взрывчатые соединения - фульминаты. Особенно легко она реагирует с алюминием, потому ее никогда не помещают в алюминиевые гильзы. Детонаторы с гремучей ртутью помещают в картонные гильзы и реже - в медные или латунные.

Азид свинца Pb (N3)2 - мелкокристаллический порошок белого цвета. Влаги он не боится и при ее содержании до 30% не теряет своих взрывных свойств.

Азид свинца менее чувствителен к огню и механическим воздействия, чем гремучая ртуть, однако по своей мощности превосходит последнюю. Он также применяется в качестве первичного инициирующего ВВ при изготовлении капсюлей-детонаторов.

В присутствии влаги и углекислоты азид свинца легко взаимодействует с медью; с железом он взаимодействует с трудом, а с алюминием не взаимодействует вовсе. По этой причине детонаторы с азидом свинца изготавливают в алюминиевых и картонных гильзах. В медные гильзы азид свинца помещать нельзя.

ТНРС /тенерес/ С6Н(NO2)3 * PbO2H2O - это кристаллическое вещество золотисто-желтого цвета, темнеющее на воздухе. Тенерес в несколько раз слабее азида свинца и гремучей ртути. Но к огню он очень чувствителен и небольшая его доза поверх заряда азида свинца гарантирует безотказный взрыв азидного детонатора и от пламени огнепроводного шнура и от электровоспламенителя.

Аммиачно-селитренные ВВ.

Взрывчатые вещества этой группы представляют собой механические смеси аммиачной селитры /свыше 50% по весу/ с другими взрывчатыми и невзрывчатыми веществами. Они подразделяется на аммониты, аммоналы и динафталиты.

Аммиачная селитра NH4NO3 - белый кристаллический порошок. При температурах -16° и +32° происходит перекристаллизация аммиачной селитры, сопровождаемая спеканием, в результате чего она из рыхлой превращается в плотную, комковатую массу.

Аммиачная селитра очень гигроскопична и легко растворяется в воде. При длительном хранении, особенно в условиях временной влажности, происходит ее слеживание.

Аммиачная селитра является не только носителем кислэрода но и взрывчатым веществом. При достаточно сильном первоначальном импульсе она может взрываться. Инициирование происходит взрывом промежуточного патрона аммонита, вес которого должен составлять от 5 до 20% от веса селитры. Работоспособность ее равна 200 см3, бризантность - 1,5 мм, скорость детонации - 1500-3000 м/сек.

Аммониты - это смеси аммиачной селитры и взрывчатых нитросоединений с горючими добавками. В качестве нитросоединения чаще всего применяется тротил, который, в той или иной мере, входит в большинство различных марок аммонитов. Аммониты повышенной мощности дополнительно могут содержать добавки гексогена или ТЭНА. В качестве горючих, но невзрывчатых добавок чаще всего применяется древесная мука,

Свойства аммиачной селитры, как основного компонента аммонитов, во многом определяют и свойства последних. Большинство аммонитов рядовых марок обладают высокой гигроскопичностью, способностью к спеканию и слеживанию. Такие аммониты применять во взрывных работах нельзя, они могут давать отказы, или неполный взрыв, переходящий, в ряде случаев в простое горение.

Количество ядовитых газов при недостаточности взрыва резко возрастает, что создает дополнительные трудности при производстве вентиляционных работ в условиях подземных выработок.

Для уменьшения гигроскопичности аммонитов в состав марок вводят небольшие /до 1%/ добавки парафина, жирных кислот, содей стеариновой кислоты и т.п. Кроме того, парафинируют тонким слоем, с заворачиванием в парафинированную или пергаментную бумагу, все патроны аммонита.

Аммониты выпускаются в прессованном, патронированном и рассыпном виде. Они отличаются невысокой стоимостью и безопасностью в обращении, малочувствительны к огню, трению и удару. Взрывчатые свойства аммонитов зависят не только от их состава, но и от способа изготовления.

Некоторые марки аммонитов по основным своим показателям работоспособность, бризантность, скорость детонации и т.д./ не уступают динамитам, а по работоспособности превосходят и 62% динамит.

Для уменьшения теплоты и температуры взрыва в состав аммонитов вводят добавки поваренной соли и хлористого калия. Такие аммониты называются предохранительными, что позволяет их использовать в выработках, опасных по газу, угольной и серной пыли или по парам нефти и бензина.

Все это привело к тому, что в настоящее время аммонита получили преимущественное распространение при всех видах взрывных работ.

Аммоналы - состоят ив аммиачной селитры /до 70%/, взрывчатых нитросоединений и порошка алюминия или ферросилиция /до 16%/ . Отличаются они довольно высокой работоспособностью и влагоустойчивостью. Остальные свойства во многом напоминает свойства обычных аммонитов.

Динафталиты - это также аммиачно- селитренные ВВ, в состав которых входит динитронафталин. В отличие от аммонитов они негигроскопичны и не слеживаются, что является их весьма ценным свойством.

Все аммиачно-селитренные ВВ имеют гарантийный срок хранения не свыше 6 месяцев. На исходе срока хранения, а также случае возникновения сомнения в их доброкачественности аммиачно-селнтренные ВВ должны подвергаться испытаниям на полноту взрыва, на передачу детонация и на влажность. Аммиачно-селитренные ВВ, пришедшие в негодность, должны уничтожаться.

По характеру воздействия на окружающую среду ВВ делятся на две группы: бризантные (дробящие) и метательные (пороха). Среди бризантных ВВ в особую группу выделяют обладающие высокой чувствительностью инициирующие ВВ, которые применяют для изготовления средств инициирования -- капсюля-детонатора (КД), электродетонатора (ЭД) и детонирующего шнура (ДШ). Для изготовления средств инициирования, применяемых в горной промышленности, используют гремучую ртуть, азид свинца, тенерес, тетрил, гексоген, тэн.

3.3. Промышленные (рабочие) ВВ, их классификация и маркировка

Промышленные ВВ предназначаются для дробления, разрушения и перемещения горных пород. Из многокомпонентных смесевых ВВ применяются следующие основные группы ВВ: динамоны -- смеси аммиачной селитры с жидкими и твердыми невзрывчатыми горючими добавками; аммониты -- порошкообразные смеси аммиачной селитры с добавками тротила, гексогена, горючих веществ в разном процентном отношении; аммоналы -- смеси аммиачной селитры, тротила и алюминиевой пудры; граммониты (гранулированный аммонит) -- смеси из гранулированного или чешуйчатого тротила и гранулированной аммиачной селитры; алюмотол -- гранулированный сплав тротила и алюминиевой пудры, представляющий водосодержащее взрывчатое вещество (ВВВ) и обладающий повышенной плотностью, в состав которого входят тротил, аммиачная селитра, алюминиевая пудра и насыщенный или пересыщенный раствор селитры; динамиты -- многокомпонентные патронированные смеси на основе нитроглицерина и нитрогликоля с добавками нитроэфиров; детониты -- патронированные смеси аммонала с добавками нитроэфиров; оксиликвиты -- патроны из органических поглотителей с большой удельной поверхностью (торф, камыш и т. д.), пропитанные жидким кислородом; метательные ВВ (дымные пороха) применяются для отбойки штучного камня, когда надо отколоть блок от массива с минимальным дробящим эффектом.

Страницы: 1, 2, 3, 4


© 2010 Современные рефераты