Рефераты

Разработка канала для комплексной скважинной аппаратуры

Разработка канала для комплексной скважинной аппаратуры

2

2

ДИПЛОМНЫЙ ПРОЕКТ

Разработка канала для комплексной скважинной аппаратуры

РЕФЕРАТ

Выпускная квалификационная работа содержит 71 страницу, 9 рисунков, 8 таблиц, 8 источников, 1 приложение, 8 листов графического материала формата А1.

ВЛАГОСОДЕРЖАНИЕ НЕФТИ, КАНАЛ ИЗМЕРЕНИЯ ВЛАЖНОСТИ, КАНАЛ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ, КОМПЛЕКСНАЯ СКВАЖИННАЯ АППАРАТУРА, МИКРОКОНВЕРТОР

В выпускной квалификационной работе проведено исследование и анализ методов измерения влажности и температуры, разработана принципиальная схема канала, произведен расчет основных компонентов схемы, проведен анализ погрешностей разработанного канала. Разработаны конструкции первичных преобразователей.

В экономической части приведен расчет стоимости проведенных работ. Рассмотрены вопросы безопасности жизнедеятельности человека при эксплуатации данного канала.

Содержание

Введение

1. Анализ технического задания. Выбор методов измерений

1.1 Требования к комплексной скважинной аппаратуре

1.2 Анализ технического задания

1.3 Выбор метода измерения влагосодержания

1.4 Выбор метода измерения температуры

2. Разработка структурной схемы

2.1 Структурная схема комплексной скважинной аппаратуры

2.2 Структурная схема каналов измерения температуры и влажности

2.3 Выбор основных узлов

3. Разработка принципиальной схемы

3.1 Вывод функции преобразования датчика влажности

3.2 Разработка принципиальной схемы преобразователя емкости в период

3.3 Разработка принципиальной схемы преобразователя сопротивления в напряжение

3.4 Режим работы АDuC 834

4. Математические модели измерительных каналов

4.1 Математическая модель первичного преобразователя температуры

4.2 Математическая модель канала измерения содержания воды в нефти

5. Анализ погрешностей

5.1 Основная погрешность канала измерения температуры

5.2 Дополнительная погрешность канала измерения температуры

5.3 Основная погрешность канала измерения влажности

5.4 Дополнительная погрешность влагомера

6. Разработка конструкции

6.1 Разработка конструкции для первичного преобразователя температуры 56

6.2 Разработка конструкции первичного преобразователя влагомера

7. Технико-экономическое обоснование

7.1 Оценка экономической эффективности проекта

7.1.1 Расчет затрат и стоимости проекта

7.1.2 Расчет количества и стоимости сырья, основных материалов и покупных изделий

7.1.3 Расчет трудоемкости и тарифной заработной платы производственных рабочих

7.1.4 Расчет себестоимости

7.2 Расчет ожидаемой экономической эффективности

7.2.1 Расчет общих капитальный вложений в проектируемый канал

7.2.2 Смета эксплуатационных расходов

7.2.3 Срок окупаемости

8. Обеспечение безопасности жизнедеятельности

8.1 Требования к оборудованию, аппаратуре и техническим средствам

8.2 Меры безопасности при эксплуатации скважинного прибора

8.3 Правила эксплуатации, хранения и транспортировки

Заключение

Список использованных источников

Введение

Геофизические исследования скважин являются областью прикладной геофизики, в которой современные физические методы исследования вещества используются для геологического изучения резервов, пройденных скважинами, выявления оценки запасов полезных ископаемых, получения информации о ходе разработки месторождений и о техническом состоянии скважин.

Применительно к изучению резервов нефтяных и газовых скважин эти исследования называют промысловой геофизикой. Кроме того, в практике используется термин «каротаж». Каротаж (фр.) -- исследование литосферы методами создания (бурение или продавливание) специальных зондировочных скважин и проведения измерений при прохождении электрическими, магнитными, радиоактивными, акустическими и другими методами. В современном понятии обозначает совокупность геофизических работ на скважинах - скважинную геофизику или геофизические исследования скважин.

Геофизические исследования в скважинах выполняются с помощью специальных установок, называемых промыслово-геофизическими (каротажными) станциями.

В последние годы значительно увеличились глубины скважин, значительно усложнились условия их проходки. Это потребовало создания новых высокопроизводительных приборов и аппаратуры на основе достижений электронной техники и широкого внедрения обработки геофизических данных на ЭВМ.

Разработана комплексная скважинная аппаратура - агрегатированная система геофизических скважинных приборов, рассчитанных на высокие давления и температуры. Она содержит несколько модулей, каждый из которых измеряет определенный параметр [1]. Целью данной работы является разработка одного из таких модулей, а именно, канала измерения содержания воды в нефти и канала измерения ее температуры.

Влажность нефти является одним из важнейших технологических параметров. На разных этапах добычи и подготовки нефти она определяет правильность эксплуатации нефтяного пласта, интенсивность эмульгирования водо-нефтяной смеси в процессе ее перекачки, эффективность процессов деэмульсации и качество товарной нефти, поступающей на переработку. С влагосодержанием тесно связано также содержание солей, которые причиняют немалый вред оборудованию нефтеперерабатывающих заводов.

1 Анализ технического задания. Выбор методов измерений

1.1 Требования к комплексной скважинной аппаратуре

Под комплексной скважинной аппаратурой понимается совокупность измерительных устройств, предназначенных для определения физических величин и параметров в скважинах. В состав аппаратуры в общем случае входят скважинный прибор и наземные блоки, соединенные геофизическим кабелем. Поскольку скважинная аппаратура эксплуатируется совместно с геофизическими лабораториями и станциями, основные узлы последних входят в состав телеизмерительной системы скважинной аппаратуры и обеспечивают ее нормальную работу.

Одним из требований разработки скважинной геофизической аппаратуры, вытекающих из условий ее эксплуатации, является максимальное упрощение части измерительной схемы, опускаемой в скважину в процессе исследований. Однако это требование должно учитываться наравне с требованием оптимальности аппаратуры. Так сигнал, поступающий с датчика или приемника зонда, часто имеет небольшую мощность или вид, неудобный для передачи по кабелю, поэтому возникает необходимость соответствующего преобразования сигнала с помощью устройств, сосредоточенных в скважинном приборе. Выходные параметры должны быть согласованы с электрическими параметрами геофизического кабеля, что нередко вызывает дополнительные усложнения схемы.

Таким образом, измерительная схема геофизической аппаратуры включает две части, одна из которых располагается в скважинном приборе, а другая - на поверхности.

Наиболее ответственной в метрологическом отношении частью аппаратуры является зондовое устройство или датчик [2].

При эксплуатации аппаратура и ее отдельные блоки находятся под воздействием различных факторов (нагрузок). К ним относятся климатические условия, механические и электрические нагрузки, квалификация обслуживающего персонала, обеспеченность материалами и запасными частями и т.п.

Механические нагрузки (вибрация, удары, постоянно действующее ускорение) возникают при транспортировке и эксплуатации аппаратуры. Количественные значения механических нагрузок, воздействующих на аппаратуру в целом при различных условиях ее работы, приводятся в стандартах и другой нормативно-технической документации.

В результате воздействия механических нагрузок наблюдается: смещение скользящих и вращающихся деталей и узлов аппаратуры, разрушение паек, разрушение нитей накала ламп, короткое замыкание близко расположенных проводников и деталей, размыкание нормально замкнутых контактов, замыкание нормально разомкнутых контактов, обрыв и разрушение элементов конструкции.

Климатические нагрузки (температура, влажность, конденсационная влага, гидростатическое давление) воздействуют на аппаратуру на всех этапах ее эксплуатации. Например, скважинный прибор должен выдерживать температуру порядка 120?С и высокое давление порядка 60 МПа.

В результате воздействия климатических нагрузок наблюдается: изменение значений электрических констант (R, L, C и т.д.), размягчение и потеря эластичности изоляции, уменьшение поверхностного и объемного сопротивления изоляции, переохлаждение и замерзание движущихся частей аппаратуры, размыкание и замыкание контактов вследствие коробления, изменение прочности конструкционных элементов, чрезмерный механический износ подвижных частей аппаратуры вследствие проникновения песка и пыли.

Климатические нагрузки в отдельных частях аппаратуры могут резко отличаться от их значений в окружающей среде.

Электрические нагрузки (ток, напряжение, рассеиваемая мощность) обычно определяются для отдельных элементов изделия и реже для его узлов. Электрическая нагрузка зависит от принципиальной электрической схемы, конструкции аппаратуры и стабильности частоты и напряжения питания.

В результате воздействия электрических нагрузок появляются: обрыв элементов или узлов аппаратуры в результате их перегорания, короткое замыкание элементов или узлов в результате пробоя, изменение значений электрических констант (R, L, C и т.д.) [2].

Комплексная скважинная аппаратура должна удовлетворять всем перечисленным выше требованиям и выдерживать подобные условия эксплуатации.

1.2 Анализ технического задания

Разрабатываемый канал должен удовлетворять следующим требованиям:

1) Разрабатываемый модуль измерения температуры и содержания воды в нефти предназначен для работы в составе комплексной скважинной аппаратуры.

2) Диапазон измерения температуры, ?С 0...120

3) Диапазон измерения влагосодержания, % 0...100

4) Погрешность измерения температуры:

а) основная погрешность, ?С ±0,05

б) дополнительная температурная погрешность, ?С/?С

5) Погрешность измерения влагосодержания:

а) основная погрешность ±0,05

б) дополнительная температурная погрешность, 1/ ?С

6) Время преобразования, с, не более 0,2

7) Напряжение электрического питания, В 5

8) Диаметр корпуса прибора, мм 28

9) Выходной код - двоичный, последовательный, 24-разрядный.

Проанализировав техническое задание, можно сказать, что высокой точности требует измерение температуры. К измерению же влагосодержания не предъявляется требования высокой точности, поскольку все существующие методы определения влажности не могут ее обеспечить. Быстродействие модуля невысокое.

1.3 Выбор метода измерения влагосодержания

Методы измерения влажности жидкости можно разделить на 5 групп: равновесные, испарительные, выделительные, химические и физические.

При использовании равновесных методов измерения сводятся к определению влажности газовой фазы, находящейся в подвижном гигротермическом равновесии с жидкостью, содержащей влагу. Практически используется электрохимический влагомер газов и гигроскопический дилатометрический влагомер газов. Недостаток метода - большая инерционность и невысокая точность.

При использовании испарительного метода определение содержания влаги в жидкости подменяется определением ее в газе, для чего пробу влажной жидкости полностью выпаривают. Этот метод позволяет пользоваться любым типом влагомера для газов; он пригоден для измерения влажности низкокипящих жидкостей, упругость паров которых при температуре окружающего прибор воздуха не превышает рабочего давления данного влагомера (0,07 до 1,0 МПа) - фторированных углеводородов (фреона), сжиженного нефтяного газа, жидкого пропана и др. Если это давление значительно (единицы и десятки МПа), применяют редуктор давления и обогреваемый паром или электричеством испаритель.

В выделительных влагомерах влагу сначала выделяют из контролируемой жидкости тем или иным способом (дистилляция, экстрагирование жидкостью, вымывание газом), после чего прямо или косвенно определяют содержание воды в отгоне или экстракте. При работе по методу экстрагирования (чаще всего диоксаном) нужно, чтобы экстрагирующее вещество не взаимодействовало с безводной частью контролируемой жидкости. Дистилляционный метод в прямом виде примени только к жидкостям с относительно низкой упругостью -поров (например, трансформаторное масло) и недиссоциирующим термически при температуре перегонки. При малых концентрациях воды (10-1 до 10-4% объемный) ее предпочтительно выделяют промыванием жидкости в колонке током тщательно осушенного (остаточное содержание влаги менее 1 - 10-4% объемный) нейтрального газа.

В химических методах вода контролируемой жидкости вступает количественно в химическую реакцию со вспомогательным реагентом, вводимым в жидкость, и мерой определяемого содержания воды является количество продуктов реакции или ее тепловой эффект. Эти методы получили значительное распространение как образцовые в широком интервале значений концентраций влаги в жидкостях как методы лабораторного и производственного спорадического экспресс-анализа. Физические (прямые) методы характеризуются тем, что содержание воды в контролируемой жидкости определяют измерением значений каких-либо однозначно зависящих от влажности, физических свойств непосредственно самой жидкости, без выделения из нее влаги. К числу свойств, используемых для этой цели, относятся диэлектрические потери и проницаемость, электропроводность, показатель преломления, плотность, температуры фазовых переходов, поглощение электромагнитных и корпускулярных излучений и др. Наибольшее значение среди них получили методы емкостные и кондуктометрические.

Влажность жидкостей, в составе которых водород составляет небольшой процент, может быть измерена методом ядерного резонанса.

Недостатком всех перечисленных выше методов является то, что для них необходимо специальное оборудование, либо их необходимо проводить в лабораторных условиях.

Кондуктометрический метод основан на измерении электропроводности. Однако она зависит не только от соотношения воды и нефти, но также и от химического состава жидкости. Из-за наличия солей в воде результат измерения может изменяться в 50-100 раз.

Поэтому наиболее приемлемым методом для решения поставленной задачи является диэлькометрический, основанный на существовании функциональной зависимости между диэлектрической проницаемостью водо-нефтяной эмульсии и объемным содержанием воды в ней [3]. Этот метод наиболее удобен для практической реализации. Кроме того, он имеет высокие метрологические показатели и возможность контроля влажности непосредственно в потоке нефти.

В качестве первичного преобразователя используем цилиндрический датчик, состоящий из металлического корпуса, который служит наружным электродом, и коаксиального внутреннего цилиндрического электрода, покрытого слоем прочной и термостойкой пластмассы для защиты от воздействия внешней агрессивной среды. Такой преобразователь отличается простотой конструкции и удобством сопряжения с трубопроводом.

1.4 Выбор метода измерения температуры

Термический каротаж широко используется как на стадиях региональных и зональных геофизических исследований, так и на стадии эксплуатации скважин, включая контроль процессов разработки и изучение состояния скважин [4]. В связи с этим большую роль играют технические и, прежде всего, метрологические характеристики применяемых средств измерения температуры. В настоящее время имеются реальные технические возможности создавать средства термометрии, обладающие существенно более высокими метрологическими характеристиками по сравнению с известными серийно выпускаемыми каротажными приборами и системами.

К важнейшим метрологическим характеристикам относятся:

- погрешность измерения температуры (во всем диапазоне условий эксплуатации);

- разрешающая способность по температуре;

- инерционность (постоянная времени);

- долговременная стабильность характеристик.

Улучшение указанных характеристик позволит не только повысить точность измерений температуры и термоградиента, но и повысить метрологическую надежность средств измерений и достоверность получаемой измерительной информации.

В термоизмерительных приборах метрологические характеристики прибора в целом определяются главным образом характеристиками первичного измерительного преобразователя (датчика) температуры.

Различные средства измерения температуры можно подразделить по типу используемых первичных преобразователей.

Термоэлектрические преобразователи. При использовании термоэлектрических преобразователей (термопар) возникает необходимость измерения значения термо-ЭДС на выходе термопары. Для этой цели широко применяются милливольтметры и компенсаторы постоянного тока, шкалы которых градуируются непосредственно в градусах температуры.

При измерении температуры свободные концы термопары должны находиться при постоянной температуре. Рабочий диапазон температур термопары 0 - 150?С и точность измерения до 0,001.

Кварцевые термопреобразователи. В последние годы для измерения температур от -80 до +250?С все более широкое распространение получают кварцевые термопреобразователи, отличающиеся высокой разрешающей способностью и имеющие частотный выходной сигнал, хорошо защищенный от помех и легко преобразуемый в цифровой код. В кварцевом термопреобразователе используется зависимость собственной частоты кварцевого элемента от температуры.

Кварцевые термопреобразователи имеют высокую чувствительность (до 103Гц/К), высокую временную стабильность (0,02К за год) и разрешающую способность 10-4-10-7К, что и определяет перспективность их использования в цифровых термометрах, а применение микропроцессоров открывает возможность учета их индивидуальных нелинейных градуировочных характеристик.

Пирометры. Приборы для измерения температуры, основанные на использовании энергии излучения нагретых тел, называются пирометрами. Они делятся на радиационные, яркостные и цветовые.

Радиационные пирометры используются для измерения температуры от 20 до 2500?С. Они градуируются по излучению абсолютно черного тела, поэтому неточность оценки коэффициента неполноты излучения вызывает погрешность измерения температуры.

Яркостные (оптические) пирометры основаны на сравнении в узком участке спектра яркости исследуемого объекта с яркостью образцового излучателя. Они обеспечивают более высокую точность измерений температуры, чем радиационные. Их основная погрешность обусловлена неполнотой излучения реальных физических тел и поглощением излучения промежуточной средой, через которую производится наблюдение.

Цветовые пирометры основаны на измерении на двух длинах волн, выбираемых обычно в красной или синей областях спектра. Диапазон измерения температур 900-2200?С с основной погрешностью ±1%.

Шумовые термометры. Для измерения температуры в диапазоне 4-1300К применяются шумовые термометры, действие которых основано на зависимости шумового напряжения на резисторе от температуры. Практическая реализация метода заключается в сравнении шумов двух идентичных резисторов, один из которых находится при известной температуре, а другой - при измеряемой.

Термометры ядерного квадрупольного резонанса (ЯКР) основаны на взаимодействии градиента электрического поля кристаллической решетки и квадрупольного электрического момента ядра, вызванного отклонением распределения заряда ядра от сферической симметрии. Это взаимодействие обусловливает прецессию ядер, частота которой зависит от градиента электрического поля решетки. А он, в свою очередь, зависит от температуры, и с ее повышением частота ЯКР понижается. Погрешность измерения температуры 10К составляет ±0,02К, а температуры 300К ±0,002К.

Термометры, использующие явление ядерного магнитного резонанса (ЯМР), применяются для измерения низких температур. Прецизионный ЯМР-термометр предназначен для измерения температур от 1мК до 1К. Амплитуда сигнала ЯМР-термометра и период релаксации обратно пропорциональны абсолютной температуре [5].

В большинстве известных каротажных приборов и систем применяются резистивные (медные или платиновые) и полупроводниковые (на основе p-n перехода) датчики температуры. Однако указанные датчики имеют существенные недостатки.

Медные и платиновые термопреобразователи сопротивления обладают невысокой чувствительностью - их ТКС порядка 1/?С. По сравнению с медными платиновые термопреобразователи имеют существенно более высокую временную стабильность параметров, однако у них большие габариты и инерционность.

Полупроводниковые датчики на основе p-n перехода имеют малые габариты и тепловую инерцию, но их точность не велика - в диапазоне температур 0...100 ?С их погрешность порядка 0,5...1 ?С. В связи с этим их использование целесообразно в каротажных измерительных приборах и системах с невысокими требованиями к точности измерения температуры.

В то же время давно известны полупроводниковые резистивные преобразователи температуры (термисторы), большим достоинством которых является высокая чувствительность. Их ТКС порядка 1/?С, т.е. на порядок выше, чем у медных и платиновых терморезисторов. Однако их применение в термоизмерительной аппаратуре в течение многих лет сдерживалось следующими отрицательными факторами:

- существенной нелинейностью функции преобразования;

- неудовлетворительной временной стабильностью характеристик;

- большим разбросом характеристик от одного экземпляра к другому, а следовательно невзаимозаменяемостью.

Следует отметить, что в последние 10-12 лет в производстве термисторов произошли существенные изменения, которые определили перспективность их применения в разнообразных термоизмерительных приборах, в том числе и в приборах высокой точности.

С метрологической точки зрения к числу лучших из серийно выпускаемых термисторов можно отнести продукцию фирмы BetaTHERM (Ирландия). Совершенствование материалов и технологии позволило этой фирме обеспечить выпуск термисторов с высокой повторяемостью и долговременной стабильностью характеристик. Термисторы изготавливаются из различных материалов и имеют отрицательный температурный коэффициент сопротивления.

Основные характеристики указанных термисторов [6]:

1. Рабочий диапазон температур (-50...+150) ?С;

2. Чувствительность (ТКС) (-4...-5) %/ ?С;

3. Погрешность из-за изменения характеристик во времени в течение 10 лет 0,01 ?С/год;

4. Погрешность из-за разброса характеристик от экземпляра к экземпляру в диапазоне (0...70) ?С (эта погрешность может быть исключена путем индивидуальной калибровки датчика) ±0,2 ?С;

5. Сопротивление различных термисторов при температуре 25 ?С

от 100 Ом до 1МОм;

6. Постоянная времени в жидкости у малоинерционных датчиков 0,3 с;

7. Малые габариты (например, миниатюрные термисторы microchip имеют диаметр 0,457 мм и длину 3,2 мм).

Таким образом, указанные термисторные преобразователи миниатюрны, малоинерционны, обладают высокой чувствительностью и долговременной стабильностью характеристик. Что касается нелинейности функции преобразования, то применение микропроцессоров или микро-ЭВМ позволяет легко учитывать реальную нелинейную функцию преобразования.

Следует отметить, что высокая чувствительность и большое сопротивление термисторов существенно упрощают построение последующих измерительных преобразователей и обеспечивают достижение высокой точности и разрешающей способности.

Таким образом, применение современных термисторов в средствах измерений для термического каротажа и соответствующих алгоритмов обработки информации и калибровки приборов позволяют обеспечить высокую точность измерений в широком диапазоне температур, высокую разрешающую способность, долговременную стабильность характеристик, высокое быстродействие, простоту конструкции датчика и схемы его включения.

2 Разработка структурной схемы

2.1 Структурная схема комплексной скважинной аппаратуры (КСА)

Комплексная скважинная аппаратура контроля технического состояния скважин и разработки нефтяных месторождений ГеоПАЛС КСП 16 (далее аппаратура) предназначена для работы в совокупности с каротажной станцией и геофизическим подъемником и позволяет осуществлять геологотехнологический контроль состояния скважин и контроль разработки нефтяных месторождений.

Контроль технического состояния скважин и контроль разработки нефтяных месторождений осуществляется путем измерения и передачи по каротажному кабелю телеметрической информации о температуре, давлении, влагосодержании и электрической проводимости флюида, магнитных неоднородностях (локация муфт), интенсивности притоков (термокондуктивная индикация притоков), гамма-активности, геохимических параметрах флюидов (водородный показатель pH, концентрации ионов натрия, хлоридов и т.п.), расхода жидкости.

Скважинная аппаратура состоит из базового модуля, транзитного модуля резистивиметра, транзитного гидрогеохимического модуля и модуля расходомера. Все модули имеют унифицированные стыковочные узлы.

Электрическое соединение модулей включает в себя 3 контакта: шина питания ( +5 В), информационная шина и общая шина (“земля”).

Передача измерительной информации со скважинной аппаратуры в геофизический регистратор осуществляется по геофизическому кабелю (максимальная длина каротажного кабеля 5000 м). Она предназначена для работы с серийно выпускаемыми геофизическими регистраторами типа ОНИКС, ГЕКТОР, КЕДР и т.п. При этом используется временное разделение каналов, двоичное кодирование и последовательная передача кодов по кабелю с помощью фазо-разностной модуляции. Аппаратура обеспечивает практически одновременное измерение и регистрацию 16 измеряемых параметров.

Структурная схема скважинной аппаратуры приведена на рис. 2.1.

На схеме изображены базовый модуль БМ и дополнительные модули: модуль электропроводности МЭ (модуль резистивиметра), гидрогеохимический модуль ГГХМ и модуль расходомера МР.

Через контакты разъемов во все модули проходят 3 шины: общая шина (“земля”), шина питания (+5 В) и шина информации. Передача измерительной информации и команд управления по информационной шине осуществляется в цифровой форме с адресацией.

Такая структура скважинной аппаратуры позволяет практически без ограничений изменять количество и состав дополнительных модулей, а также обеспечивает возможность изменять количество и назначение измерительных каналов, входящих в состав базового модуля в процессе дальнейшего развития аппаратуры.

Модуль расходомера МР содержит датчик расхода ДР турбинного типа и микропроцессор МП1, который преобразует частоту повторения импульсов датчика в цифровой код.

Гидрогеохимический модуль ГГХМ содержит два измерительных электрода ИЭ1 и ИЭ2 и электрод сравнения ЭС, подключенные ко входам измерительного преобразователя ИП1. Все электроды легко вставляются в соответствующие гермовводы ГГХМ, что облегчает их обслуживание и замену. Измерительный преобразователь ИП1 имеет высокое входное сопротивление (порядка 1012 Ом) и обеспечивает измерение разностей потенциалов между каждым измерительным электродом и электродом сравнения, а также между ЭС и корпусом прибора.

Микроконвертор МК1 преобразует все вышеуказанные напряжения в цифровые коды и передает их по информационной шине в микропроцессор МП2.

Модуль электропроводности (резистивиметр) содержит датчик электропроводности ДЭ, измерительный преобразователь ИП2 и микроконвеортор МК2. Датчик электропроводности ДЭ представляет собой индукционный (двухтрансформаторный) бесконтактный кондуктометрический преобразователь, выходной сигнал которого пропорционален электрической проводимости жидкости.

Измерительный преобразователь ИП2 осуществляет питание ДЭ переменным током и преобразование выходного сигнала ДЭ в постоянное напряжение. Микроконвертор МК2 преобразует это напряжение в цифровой код и передает его по информационной шине в микропроцессор МП2. Кроме того, МК2 и ИП2 реализуют алгоритм автоматической цифровой коррекции погрешностей резистивиметра, что обеспечивает достаточно высокую точность измерений в широком диапазоне электропроводностей и температур.

Базовый модуль БМ содержит три микроконвертора (МК3, МК4, МК5), каждый из которых обеспечивает работу двух измерительных каналов. Микроконвертор МК3 осуществляет питание датчиков давления (ДД) и термокондуктивного индикатора притока (ДСТИ), а также преобразование выходных сигналов этих датчиков в цифровые коды. Датчик давления ДД представляет собой серийно выпускаемый тензопреобразователь давления, выполненный по технологии “кремний на сапфире”. Для обеспечения высокой точности измерений давления в базовом модуле выполняется автоматическая цифровая коррекция дополнительной температурной погрешности и погрешности нелинейности ДД. Микроконвертор МК3 осуществляет питание ДД и преобразование его выходных сигналов в цифровые коды.

Датчик притока ДСТИ содержит термистор и нагреватель, питание которого включается (или выключается) оператором с помощью геофизического регистратора путем изменения тока питания скважинной аппаратуры.

Микроконвертор МК4 обслуживает каналы измерения температуры и влажности. В датчике температуры (ДТ) в качестве первичного преобразователя используется миниатюрный термистор, обладающий высокой чувствительностью и долговременной стабильностью характеристик. Для обеспечения высокой точности измерений применена нелинейная математическая модель функции преобразования термистора, которая используется для вычисления значения измеряемой температуры непосредственно в базовом модуле.

Датчик влажности ДВ представляет собой емкостной датчик диэлькометрического типа, электрическая емкость которого изменяется при изменении диэлектрической проницаемости исследуемой жидкости. Измерительный преобразователь ИП3 преобразует емкость ДВ в период повторения импульсов, который в свою очередь преобразуется в цифровой код с помощью счетчика-таймера, входящего в состав МК4.

Микроконвертор МК5 обслуживает локатор муфт и гамма-канал. Датчик локатора муфт ДЛМ представляет собой дифференциальный индуктивный преобразователь, реагирующий на изменения магнитного сопротивления внешней магнитной цепи. Измерительный преобразователь ИП4 осуществляет питание датчика ДЛМ переменным током и преобразование дифференциальной индуктивности в постоянное напряжение, которое затем преобразуется в цифровой код в микроконверторе МК5.

Для обеспечения надежной работы локатора муфт в широком диапазоне скоростей движения базового модуля в микроконверторе МК5 производится статистическая обработка данных, поступающих с ДЛМ, в результате которой выдаются два числа: оценка математического ожидания (МО) и оценка среднего квадратического отклонения (СКО).

Датчик гамма-канала ДГ включает в себя кристалл NaI (или CsI) и фотоэлектронный умножитель (ФЭУ) с высоковольтным источником питания. Выходной сигнал ДГ представляет собой случайную последовательность импульсов, средняя частота повторения которых пропорциональна интенсивности гамма-излучения. Для оценивания этой средней частоты в микроконверторе МК5 выполняется подсчет числа импульсов ФЭУ за 5с, причем производится скользящее усреднение со сдвигом на 1с.

Микропроцессор МП2 осуществляет управление информационной шиной, включая получение цифровых данных от всех датчиков базового и дополнительных модулей и передачу команд соответствующим узлам прибора. Цифровые данные, полученные в цикле опроса всех измерительных каналов, поступают из микропроцессора МП2 в микроконвертор МК6, в котором производятся вычисления значений измеряемых величин в соответствии с используемыми математическими моделями измерительных каналов и хранящимися в памяти МК6 индивидуальными значениями параметров этих моделей, а также в соответствии с используемыми алгоритмами автокоррекции погрешностей. Кроме того, в МК6 производится преобразование в цифровой код напряжения, пропорционального току стабилизатора напряжения блока питания БП.

При передаче измерительной информации по геофизическому кабелю используется двоичный код небольшой разрядности (15 информационных разрядов). В связи с этим для обеспечения максимальной эффективности использования этого кода в МК6 производится преобразование вычисленного значения каждой измеряемой величины в двоичный код, передаваемый по кабелю. Код, поступает в микропроцессор МП3, который преобразует его в код фазоразностной модуляции, управляющий работой устройства передачи данных УПД.

Блок питания БП преобразует ток питания, подаваемый по кабелю от геофизического регистратора, в стабилизированное напряжение +5 В на шине питания, а также формирует команду на включение СТИ при увеличении тока в кабеле , примерно, на 120 мА [7].

2.2 Структурная схема каналов измерения температуры и влажности

Здесь можно выделить два канала: канал измерения влажности и канал измерения температуры.

Первичным преобразователем влажности ППВ является емкостной параметрический датчик. Емкость удобнее всего преобразовывать в период или частоту. Значит, необходим измерительный преобразователь ИП, который бы осуществлял это преобразование. Частоту или период целесообразно преобразовать в цифровой код, для удобства передачи информации. Для этих целей используется АЦП1.

Аналогичную структуру имеет канал измерения температуры. Первичным преобразователем ППТ здесь является термистор. Для его питания необходим источник тока ИТ. При подаче тока на первичный преобразователь ППТ температура преобразуется в напряжение. В свою очередь, напряжение также целесообразно преобразовать в цифровой код. Поэтому необходим второй АЦП.

Для удобства дальнейшей передачи данных, а также для управления АЦП1 и АЦП2 необходим микроконтроллер КНТ, в состав которого входят следующие компоненты:

- микропроцессор МП;

- оперативно запоминающее устройство ОЗУ;

- память программ;

- интерфейс.

Управляющие воздействия от КНТ подаются на АЦП1 и АЦП2. Для передачи данных к каротажной станции используется цифровая магистраль.

Также в состав структуры должен входить блок питания, от которого питались бы все компоненты схемы. Сам блок питается от каротажной станции посредством магистрали питания.

Структурная схема приведена на рис. 2.2.

Структурная схема каналов измерения температуры и влажности

2

2

Рис. 2.2

2.3 Выбор основных узлов

Как уже отмечалось выше, датчик влажности представляет собой емкостной датчик диэлькометрического типа, электрическая емкость которого изменяется при изменении диэлектрической проницаемости исследуемой жидкости.

Измерительный преобразователь емкости в период повторения импульсов представляет собой схему мультивибратора на операционном усилителе с большим коэффициентом усиления.

В качестве АЦП1 для преобразования периода в цифровой код используется таймер-счетчик.

В датчике температуры (ДТ) в качестве первичного преобразователя используется миниатюрный термистор, обладающий высокой чувствительностью и долговременной стабильностью характеристик. Для обеспечения высокой точности измерений применена нелинейная математическая модель функции преобразования термистора, которая используется для вычисления значения измеряемой температуры непосредственно в базовом модуле.

Страницы: 1, 2


© 2010 Современные рефераты