Рефераты

Сравнительные аспекты применения цифровых и аналоговых фотоаппаратов для фотографирования средств защиты денежных купюр и других ценных бумаг

p align="left">Так как ртутные лампы наряду с УФ - лучами испускают видимые и ИК - лучи, необходимую для исследования область спектра выделяют с помощью абсорбционных светофильтров, изготавливаемых из черного увиолевого стекла, прозрачного для УФ - лучей. Наибольшее применение при фотографировании находят УФС-1, УФС-2, УФС-5, УФС-6, УФС-7. В некоторых случаях для съемки в ультрафиолетовой зоне спектра используют фиолетовые светофильтры ФС-1, ФС-6, ФС-7 и даже синие стекла, например СС-4.

Кроме твердых светофильтров при съемке в УФ - зоне спектра применяют жидкостные и газообразные абсорбционные светофильтры, например, 40%-ный раствор сернокислого никеля или сернокислого кобальта с максимумом пропускания в области 254 нм. Главным их достоинством является возможность изготовления в лабораторных условиях и плавное изменение характеристик спектрального пропускания при изменении компонентов раствора и их концентрации. Вместе с тем эти светофильтры сильно ослабляют излучение и весьма нестабильны.

Для выделения узких зон УФ - спектра используют комбинацию двух светофильтров из каталога паспортизированного стекла с учетом их спектрального пропускания.

При фотографировании в УФ - зоне спектра необходимо согласовать спектральные свойства выбранного светофильтра со спектральным составом света, излучаемого источником. Например, светофильтры УФС-1, УФС-5 можно использовать с любым источником, поскольку они пропускают всю применяемую в криминалистике область УФ - спектра: коротковолновую, средневолновую и длинноволновую. Для ртутных ламп низкого давления необходимы светофильтры, пропускающие коротковолновые УФ - лучи. Со светофильтрами, выделяющими средневолновые и длинноволновые участки спектра, следует применять ртутные лампы высокого и сверхвысокого давления, или люминесцентные газоразрядные лампы.

В качестве заградительного из каталога паспортизированного стекла выбирают селективные (зональные) и компенсационные светофильтры, цветные и бесцветные: БС-7, БС-8, СБ-10, ЖЗС-5, ЖЗС-10, ЗС-1, ЗС-8, ЖС-4, ЖС-12, ЖС-17, ОС-12, ОС-14, КС-11, КС-14 и др. Светофильтры подбирают из условия, что они должны поглощать УФ - лучи и пропускать то или иное люминесцентное свечение. Например, в случае появления на объекте люминесценции желтого или желто-зеленого цвета необходимы светофильтры ЖС-4, ЖС-12, ЖС-17, или ЖЗС-4, ЖЗС-10, а для люминесценции оранжевого или красного цвета -- соответственно светофильтры ОС-12, ОС-14 или светофильтры КС-11, КС-14.

Бесцветные стекла БС-7, БС-8, БС-10 и желтый светофильтр ЖС-4 пропускают всю коротковолновую часть видимого спектра. Поэтому их используют в основном для регистрации картины видимой люминесценции сине-голубого и фиолетового цвета.

Объективы для съемки в ультрафиолетовой зоне спектра. Фотографировать в УФ - зоне спектра можно фотокамерами любого типа. Объективы общего назначения, которыми они комплектуются, пригодны для съемки только в длинноволновой части УФ - спектра. Их прозрачность в данной зоне спектра зависит от сорта стекла и его толщины, поэтому конструктивно простые объективы пропускают больше УФ - лучей, чем многолинзовые.

Для фотографирования в средневолновой и коротковолновой областях спектра необходимы специальные объективы, изготовленные из кварца, каменной соли и флюорита. На основе кварцевой и флюоритной оптики фирмой "Карл Цейс Йена" разработаны светосильные линзовые анастигматы: "УФ-объектив" 4/60 и "Кварц-штейн-зальц-анастигмат" 4,5/120, предназначенные для съемки в средневолновой и длинноволновой зонах. Отечественная промышленность для этих целей выпускает светосильные линзовые анастигматы "Уфар" и длиннофокусные зеркально-линзовые объективы "Зуфар". Эти объективы предназначены для обычных малоформатных аппаратов. Их применение позволяет подбирать масштабы изображений от 1:2 до 2:1 при достаточно больших предметных расстояниях, что создает определенные преимущества при установке освещения.

Для фотографирования люминесценции, возбужденной УФ-лучами, пригодны обычные объективы. Однако они должны быть достаточно светосильными, чтобы регистрировать свечение незначительной интенсивности.

Приемники УФ-излучения -- это, как правило, светочувствительные материалы. Фотографирование в отраженных УФ-лучах следует преимущественно на несенсибилизированные фототехнические пленки ФТ-20, ФТ-30; диапозитивные фотопластинки и фотопленки, имеющие достаточный контраст и чувствительность к длинноволновой зоне УФ-спектра. Вместе с тем эти фотоматериалы малочувствительны к коротковолновой и средневолновой зонам спектра из-за интенсивного поглощения УФ-лучей желатиной эмульсионного слоя. Данный недостаток устраняется специальной обработкой: путем введения в эмульсионный слой флюоресцирующих веществ или сенсибилизации пленок к УФ-излучению в 1%-ном спиртовом растворе салициловой кислоты.

Фотографирование люминесценции, возбужденной УФ-лучами, производят на фотоматериалы различной сенсибилизации: несенсибилизированные, изоортохроматические и фототехнические пленки, фотопластинки, кино- и фотопленки. Преимущество одних фотоматериалов перед другими определяют цвет излучения люминесценции, ее интенсивность и, соответственно общая чувствительность фотослоя. Предпочтение отдают более чувствительным материалам, позволяющим сократить выдержки при съемке.

Наряду с фотографическими материалами в качестве приемников УФ-излучения используются флюоресцирующие экраны. С их помощью можно визуально наблюдать исследуемые объекты, проводить опосредованную съемку полученного изображения, а при достаточной интенсивности свечения фокусировать его в фотокамерах.

Распространенными приемниками УФ-излучения являются и электронно-оптические преобразователи, трансформирующие невидимое изображение, создаваемое УФ-и и ИК-лучами, в видимое. В процессе такого преобразования происходит усиление яркости изображения и перенос его из одной спектральной зоны в другую. Преобразователи типа "Рельеф" предназначены для проведения визуальных исследований криминалистических объектов в отраженных и проходящих ИК-лучах, а также для фотографирования результатов малоформатной камерой "Зените". Для проведения исследований на данном приборе в УФ-лучах вместо обычного объектива устанавливают кварцевый со светофильтром, пропускающим только УФ-лучи.

Выбор фотоматериалов для фотографирования изображений с флюоресцирующих экранов и экранов электронно-оптических преобразователей определяет цвет свечения экрана: при сине-голубом применяют несенсибилизированные фотоматериалы, при зеленом -- изоортохроматические.

Съемка видимой люминесценции, возбужденной ультрафиолетовыми лучами.

Рис 2. Съемка видимой люминесценции, возбужденной ультрафиолетовыми лучами

Люминесцентное свечение, как правило, отличается небольшой интенсивностью. Чтобы на снимке зафиксировать люминесцентную картину в чистом виде, необходимо устранить мешающее действие постороннего дневного или искусственного света, освещающего помещение и снимаемый объект. Поэтому съемка ведется либо в темном помещении, либо с помощью несложного устройства: ящика с несколькими окнами (вырезами). Через верхний вырез производится съемка, а через боковые освещается исследуемый предмет, положенный на дно ящика. Иногда в боковые окна вставляют ультрафиолетовые фильтры, выделяющие нужную для исследования область ультрафиолетовых лучей. В качестве источников освещения используют те же газоразрядные или люминесцентные лампы, что и для фотографирования в отраженных ультрафиолетовых лучах.

Картина люминесценции может быть искажена в результате сильного мешающего действия ультрафиолетовых лучей, рассеиваемых объектом съемки. Иногда это действие настолько сильно, что вместо ожидаемого изображения люминесценции получается своеобразная негативная картина, на которой не люминесцирующие (и не поглощающие ультрафиолетовые лучи, а отражающие их) участки объекта, в конечном счете, оказываются светлее, чем люминесцирующие участки.

Частично отраженные ультрафиолетовые лучи поглощаются стеклом объектива, но этого недостаточно, особенно в случае, когда в возбуждении люминесценции участвуют длинноволновые ультрафиолетовые лучи (360 ммк). Поэтому перед объективом устанавливается "заградительный" фильтр, поглощающий ультрафиолетовые лучи, а также те видимые лучи, которые могут входить в состав возбуждающего освещения. Вместе с тем этот фильтр должен хорошо пропускать свет люминесценции. Так, если для фильтрования возбуждающего люминесцентного света применяются светофильтры УФС-1, УФС-2, а цвет люминесценции голубой или зеленый, то в качестве заградительных фильтров применяются фильтры ЗС-1, ЖЗС-5, ЖС-4, ЖС-17 и некоторые другие. Кроме того, могут быть использованы белые светофильтры типа БС-7, БС-8.

Для съемки целесообразно применять негативные фотоматериалы средней и высокой чувствительности подбирая их цветочувствительность в соответствии с цветом люминесценции. Использование репродукционных низкочувствительных материалов требует длительных экспозиций.

Кадрирование и наводку на фокус осуществляют обычным способом при освещении объекта съемки белым светом. Введения поправки на фокус не требуется.

Съемка инфракрасной люминесценции, возбуждаемой видимым светом. Общие правила фотографической съемки в инфракрасных лучах применимы и для съемки инфракрасной люминесценции. Некоторые дополнительные трудности в этом случае связаны с весьма малой интенсивностью свечения. Возбуждение инфракрасной люминесценции осуществляется обычно сине-зеленым светом. Для освещения применяются мощные лампы накаливания (300--500 ватт). Еще лучший эффект дают ртутные лампы сверхвысокого давления типа СВДШ, так как их излучение богато зелеными лучами и почти не содержит инфракрасных. Свет ламп пропускается через теплозащитный сине-зеленый фильтр СЗС-16, ослабляющий тепловое действие пучка света, и фильтр СЗС-10. Пройдя через фильтры, он направляется на исследуемый объект.

Вместо этих фильтров иногда пользуются жидким фильтром в виде раствора медного купороса в воде (100 г купороса на 1000 мл воды). Раствор наливается в стеклянный сосуд с плоскими стенками, причем фильтрующий слой должен иметь толщину в 2--3 см.

Перед объективом фотоаппарата устанавливается светофильтр, поглощающий видимые лучи, отражаемые объектом, и пропускающий инфракрасное свечение люминесценции. Чаще используют не инфракрасные фильтры ИКС, а красные типа КС-19, что ведет к некоторому повышению яркости оптического изображения и уменьшению выдержки.

Для съемки могут быть использованы материалы "Инфрахром", а в тех случаях, когда используется фильтр КС-19, -- также высокочувствительные материалы "панхром". В последнем случае фиксируется преимущественно не инфракрасная люминесценция, а люминесцентное свечение объекта в дальней красной области.

Для съемки обычно пользуются такими же устройствами в виде ящика с окнами, как и при съемке люминесценции, возбуждаемой ультрафиолетовыми лучами.

Наводку на резкость целесообразно производить, пользуясь теми источниками, с которыми будет производиться съемка, но вместо инфракрасного фильтра па время наводки следует поставить красный или оранжевый светофильтр, а зеленые фильтры удалить.

Картина инфракрасной люминесценции может быть фотографически запечатлена с помощью электронно-оптического преобразователя. В этом случае следует применять сильные источники света, дающие узкий параллельный пучок света, и упомянутые уже ранее зеленые светофильтры. Перед объективом электронно-оптического преобразователя устанавливается фильтр КС-19 или К.С-17.

В случае съемки через преобразователь также должны быть созданы условия, чтобы на исследуемый предмет попадал только свет источника, прошедший через фильтр.

Особенности фотографирования УФ-люминесценции. Схема фотографирования невидимой люминесценции аналогична фотосъемке видимой. Для ее возбуждения применяются бактерицидные лампы ДБ и ртутные лампы высокого и сверхвысокого давления, выделяя необходимую область излучения с помощью газового или жидкостного светофильтра. При съемке УФ-люминесценции устанавливаемые перед объективом светофильтры должны поглощать возбуждающее излучение и пропускать люминесцентное.

Для съемки длинноволновой УФ-люминесценции пригодны обычные фотографические объективы, а для регистрации средневолновой необходимы объективы "Уфар-1" или "Уфар-4". Кадрирование и фокусирование изображения осуществляют в соответствий с рекомендациями для фотографирования в отраженных УФ-лучах

Съемку осуществляют на пленки типа УФШ или на обычные фотоматериалы после их сенсибилизации.

В своем эксперименте я проводила фотографирование на аналоговые фотоаппараты типа "Зенит" и различные виды цифровых фотоаппаратов (фото) Результаты в целом представлены в приложении № 1

2.3 Фотографирование в инфракрасных лучах объектов криминалистических экспертиз

Инфракрасная фотография -- это метод съемки в ИК-зоне спектра признаков различных объектов, не воспринимаемых в обычных условиях. Этот метод основан на способности ИК-лучей иначе, чем видимые, взаимодействовать с материалами и веществами, что делает его незаменимым в криминалистической практике.

Широкое применение ИК-фотография находит в судебно-технической экспертизе документов при восстановлении содержания угасших, вытравленных, смытых или залитых текстов, в судебно-баллистической и судебно-медицинской экспертизах, при исследовании других криминалистических объектов.

Многие вещества, в том числе различные минеральные и органические вещества, будучи одинаковы по цвету, наблюдаемому визуально (либо одинаково прозрачные, бесцветные), в области инфракрасных или ультрафиолетовых лучей обнаруживают заметное различие в коэффициентах отражения и пропускания. Например, фиолетовые чернила в штрихах при освещении белым светом в среднем отражают не более 25% падающего на них света, т. е. намного меньше, чем бумага. Поэтому такие штрихи хорошо видны на фоне бумаги.

В инфракрасной же области они обнаруживают почти полную прозрачность, так что и штрихи и бумага практически отражают одинаково около 80% падающего света. На этом основан метод выявления записей, написанных карандашом или тушью и зачеркнутых чернилами, изготовленными из синтетических красителей.

Карандашные либо типографские штрихи непрозрачны для инфракрасных лучей и хорошо выделяются на снимке, тогда как пятно чернил оказывается незаметным. К съемке в инфракрасных лучах прибегают также для дифференциации тканей, окрашенных на вид одинаковыми красителями, для выявления дописок в документах, сделанных чернилами иного состава, нежели чернила, которыми написан первоначальный текст, и т. п.

Фотографические материалы, специально сенсибилизированные к инфракрасным лучам, обладают чувствительностью примерно до 800--900 ммк. В соответствии с этим выбирают светофильтры и источники света.

Рис.3. Съемка в инфракрасных лучах.

В преобладающем большинстве случаев в качестве источников используются обычные электрические лампы накаливания или лампы с пониженным накалом.

У обычных ламп (300--500 ватт) инфракрасные лучи зоны 750--1000 ммк преобладают в составе всего излучения, делая этот источник вполне пригодным для съемки в инфракрасных лучах. Лампы с пониженным накалом и тепловые источники (плитки и т. п.) излучают преимущественно в более длинноволновой области.

Так как фотографические материалы, сенсибилизированные к инфракрасным лучам, чувствительны также и к видимому свету, возникает необходимость в применении светофильтра.

Для этой цели чаще всего используют пленочные, желатиновые или стеклянные фильтры. Распространенные фильтры ИКС-1, ИКС-2, ИКС-3 входят в наборы паспортизованных фильтров. Можно использовать также красные фильтры КС-18, КС-19, пропускающие частично видимые красные лучи. Действие красных лучей в этом случае незначительно, так как чувствительность инфра - хроматических материалов к ним несколько понижена.

Нужно иметь в виду две особенности техники съемки в инфракрасных лучах: наличие фокусной разности и проницаемость для инфракрасных лучей некоторых материалов, используемых для изготовления фотоаппаратуры.

Оптическое изображение, образованное инфракрасными лучами, располагается несколько дальше от объектива, чем изображение, построенное видимыми лучами, при тех же условиях. Эта разница в фокусах может повлечь нерезкость изображения, незначительную при пользовании объективами-апохроматами и более ощутимую при работе с обычными анастигматами.

Для устранения вредного влияния фокусной разницы после визуальной наводки аппарата производят поправку, отодвигая заднюю, раму камеры от объектива на некоторое расстояние. Приближенно величину этого смещения можно определить в 0,07 от длины главного фокусного расстояния объектива при съемке с уменьшением и в 0,15 длины главного фокусного расстояния при съемке в натуральную величину.

Для работы с определенным объективом величина поправки более точно может быть найдена путем пробных снимков. Объект, освещаемый инфракрасными лучами, фотографируют несколько раз. Первый снимок делается при установке, аппарата, соответствующей визуальной наводке, последующие снимки -- каждый раз со сдвигом задней рамы аппарата от объектива на величину около 0,02 главного фокусного расстояния. Наиболее резкий снимок будет соответствовать требуемому смещению кассеты.

Отметим, что величина поправки зависит от масштаба съемки и поэтому эмпирическое определение величины поправки верно лишь для того масштаба, для которого оно найдено.

При наличии сильного освещения можно обойтись без поправки, производя наводку с красным фильтром. Фокусная разница в этом случае настолько мала, что ее удается нейтрализовать некоторым диафрагмированием объектива.

Некоторые материалы, в частности дерево, эбонит, кожа, в тонких слоях обнаруживают заметное пропускание лучей с длиной волны около 1-го микрона. Поэтому для съемки в инфракрасных лучах обычно предпочитают пользоваться металлическими кассетами, а камеры (мех. затвор) проверяют на светонепроницаемость. Для этого в кассету можно вставить инфрахроматическую пластинку и камеру со вставленной кассетой, с открытой крышкой кассеты, но закрытым затвором оставить на ярком свету. Через 20--30 мин. пластинку вынимают и проявляют. Отсутствие вуали свидетельствует о пригодности камеры для работы.

В качестве фотографических материалов для съемки в инфракрасных лучах используются фотопленки и фотопластинки, сенсибилизированные к инфракрасным лучам.

Инфрахроматические материалы типа "Инфрахром" отличаются сравнительно низкой общей чувствительностью (например, для "Инфрахром-760--1,4 единицы ГОСТа), поэтому в сочетании со светофильтром, пропускающим только инфракрасные лучи, эти материалы требуют довольно длительных экспозиций,

Для повышения чувствительности инфрахроматических фотоматериалов в 3--4 раза может быть рекомендована их гиперсенсибилизация путем опускания пластинки в раствор следующего состава:

Вода дистиллированная--100 мл

Азотнокислое серебро 1%-ный раствор -- 1,5 мл

Аммиак 25%-ный -- 0,75 мл

После этого пластинка споласкивается в воде или лучше в смеси воды со спиртом и быстро сушится (например, под вентилятором) без нагревания. Гиперсенсибилизированные материалы должны быть использованы в течение нескольких часов. Все процессы производятся в полной темноте.

Обработка инфрахроматических материалов производится в полной темноте, в обычных проявляющих и фиксирующих растворах.

Изображение, полученное за счет инфракрасных лучей, может быть запечатлено другим методом, основанным на применении электронно-оптического преобразователя, т. е. специального прибора, делающего инфракрасное изображение видимым.

Для этих целей некоторые электронно-оптические преобразователи (например, "ТСС-3", имеющийся во многих криминалистических лабораториях). На экране электронно-оптического преобразователя можно непосредственно наблюдать изображение, образованное инфракрасными лучами. Съемка с экрана преобразователя представляет по существу простую репродукцию в видимом свете. Для съемки могут использоваться любые фотоматериалы, чувствительные к зеленоватому свечению экрана преобразователя.

Съемка через преобразователь не требует применения специальных фотоматериалов, но качество получаемого изображения несколько хуже того, которое может быть получено при непосредственной съемке в инфракрасных лучах. Это объясняется тем, что преобразователь вносит дополнительные искажения и потерю резкости в процесс получения окончательного изображения.

Результаты Съемки в ИК лучах в целом представлены в приложении № 3

2.4 Фотографирование в рентгеновских и гамма-лучах

Рентгеновские лучи расположены в электромагнитном спектре между УФ-лучами, с одной стороны, и гамма-лучами - с другой Рентгеновские лучи распространяются прямолинейно направление пучка рентгеновских лучей не может быть изменено при помощи линз и зеркал, как это имеет место для лучей видимых, инфракрасных и ультрафиолетовых. Рентгеновские лучи обладают значительной проникающей способностью, благодаря чему проходят через картон, дерево и ряд других предметов, непрозрачных для видимого света. Часто рентгеновские лучи делят способностью) и коротковолновые или жесткие (обладающие большой проникающей способностью).

Рентгеновские лучи обладают способностью вызывать свечение в различных телах и фотографическим действием - к ним чувствительны все виды фотоматериалов. Благодаря этому возможно получать фотографические снимки теневой картины, возникающей при просвечивании исследуемых тел.

Фотографирование в рентгеновских лучах состоит в фотографическом запечатлении изображения, полученного в результате просвечивания предмета рентгеновскими лучами. Просвечивание рентгеновскими лучами в криминалистике проводится для изучения внутренней структуры объектов, непрозрачных для видимого света. Так, в частности, с помощью этих лучей могут быть исследованы: устройство и состояние частей и механизмов огнестрельного оружия (например пистолетов, винтовок), замков, взрывных устройств без их разборки и т.д.; обнаружены металлические предметы в тканях и органах человека, в пищевых продуктах, на длинноволновые или мягкие (обладающие малой проникающей металлические изделия, спрятанные в тайниках, в ящиках с двойным дном, в ножках стола и т.д.; найдены пули и дробь, внедрившиеся в деревянные предметы. Кроме того, рентгеновские луч главным образом длинноволновые (мягкие), применяются для про чтения тайнописи, исполненной веществами, содержащими со тяжелых металлов, а также для обнаружения следов близкого выстрела.

Для получения изображения, наблюдаемого в рентгеновских лучах, применяется рентгенография - фотографическое запечатление результатов просвечивания. Рентгеновские и гамма-лучи, проходя сквозь исследуемый объект, образуют теневое изображение. Распределение плотностей этого изображения зависит от степени поглощения лучей различными частями исследуемого объекта. Это теневое изображение и фиксируется на фотографическом материале без применения съемочной аппаратуры.

Выбор рентгеновской просвечивающей аппаратуры зависит от свойств исследуемого объекта. Для выявления тайнописи на документах и следов близкого выстрела на тканях применяется длинноволновое излучение. Его источником являются специальные рентгеновские аппараты, например РУТ-60-20-1 (РУМ-7). Рентгеновская трубка в таких аппаратах работает при относительно небольшом напряжении (около 10 кВ). Для съемки более плотных объектов - изделий из дерева и пластмассы - с целью обнаружения в них металлических включений применяются более жесткие лучи, получаемые на трубке при напряжении в 40-60 кВ. Для этих целей используются рентгеновские диагностические (медицинские) аппараты РУД-100-20-1 (РУМ-4), УРПЛ-90-2 (РУ-725Б). РУТ-60-20-1 (РУМ-7) и переносная (портативная) установка типа 7-Л2 (УРПН-70-2). Аппараты РУД-100-20-1 и УРПЛ-90-2 позволяют изменять напряжение на трубке, доводя его до 90-100 кВ, При таких режимах возможны просвечивание и съемка железных, стальных и медных предметов толщиной до 10-15.мм (например, замки, огнестрельное оружие).

Рис.4. Фотосъемка в рентгеновских лучах.

Объект 1, фотографируемый в рентгеновских лучах, обычно укладывают непосредственно на крышку кассеты 2 содержащей фотопленку 3. Крышка кассеты, изготавливается из материала прозрачного для рентгеновских

лучей, и не мешает получению изображения, в то же время препятствуя засвечиванию пленки видимым светом. Такое расположение предмета относительно пленки обеспечивает наибольшую резкость изображения.

Гамма-лучи, являясь более коротковолновыми по сравнению с рентгеновскими, обладают также и большей проникающей способностью. Гамма-лучи образуются в процессе радиоактивного распада. В качестве источников гамма-лучей обычно используются искусственные радиоактивные изотопы, например изотоп кобальта - кобальт-60. Съемка в гамма-лучах применяется для исследования плотных массивных металлических объектов, в частности длинноствольного огнестрельного оружия, больших замков. Схема расположения источника излучения, предмета и кассеты с фотоматериалом аналогична той, которая применяется при съемке в рентгеновских лучах.

Препарат кобальта-60 помещается в специальный толстостенный свинцовый контейнер, имеющий окно с коническим тубусом для выхода гамма-излучения. На время экспозиции препарат переводится в рабочее положение, и пучок гамма-лучей выходит через открытое окно.

Для гаммаграфии пользуются рентгеновскими кассетами и фотоматериалами, применяемыми для рентгеновской съемки, в том числе и усиливающими люминесцирующими экранами. Съемка может производиться как без люминесцирующих экранов, что позволяет получить более резкое изображение, но при этом требуется длительная экспозиция, так и с экранами. Во втором случае на светочувствительные слои рентгеновской пленки, расположенные с двух сторон основы, действуют не только рентгеновские лучи, но и видимые лучи люминесценции, возбужденной на экране под действием рентгеновских лучей. Это позволяет значительно сократить время экспонирования и снизить вредное влияние излучения на организм человека.

При фотографировании в рентгеновских и гамма-лучах следует иметь в виду, что рентгеновские лучи, а тем более гамма-лучи, оказывают вредное действие на организм человека. Поэтому при съемке необходимо строго соблюдать все правила инструкций, определяющих условия применения специальной аппаратуры.

2.5 Процессуальное и техническое оформление фотоснимков

Особенностью фотографирования является невозможность получения готовых снимков к окончанию осмотра места происшествия и составления протокола. Поэтому процессуальное оформление фотографирования на месте происшествия состоит из двух этапов:

- отражение фактов фотографирования в протоколе осмотра места происшествия;

- оформление и удостоверение результатов фотосъемки.

Фотоснимки, полученные при производстве следственных действий только тогда приобретают доказательственное значение, когда они оформлены с соблюдением уголовно - процессуального законодательства.

Требования предъявляемые к фотоснимкам следственных действий.

1. Требования процессуального характера: отражение в протоколе следственного действия факта фотографирования; правильное оформление фототаблицы; приобщение её к уголовному делу.

2. Требования технического характера: резкость изображения, оптическая плотность, обеспечивающая необходимый контраст изображения; правильное кадрирование.

3. Требования обеспечивающие информативность снимка: полнота отображения фиксированного объекта - наличие на снимке наибольшего количества существенных признаков явления, обстоятельств, предмета и т.д.; воспроизведение основных внешних признаков объекта, позволяющих опознавать отдельные предметы, "узлы", общие планы местности и т.д.; возможность установления по снимкам размеров объектов и расстояние между ними.

Размещение фотоснимков на фототаблице производится в следующем порядке: ориентирующие; обзорные; узловые. Детальные снимки размещаются после узловых, к которым они относятся. Нумерация снимков в таблице сплошная и последовательная. Снимки в фототаблице должны быть взаимосвязанные, т.е. объект на детальном снимке должен быть виден или обозначен на узловом снимке, содержание узлового снимка - отражено на обзорном и т.д. Если какие-либо важные криминалистические объекты на ориентирующем или обзорном снимках недостаточно различимы, то на них стрелками обозначают места их расположения.

Наклеенные фотоснимки скрепляются оттиском печати экспертного органа. Под каждым фотоснимком помещается пояснительный текст: что именно изображено на фотоснимке; с какой точки произведена съемка; что поясняется стрелками, цифрами и т.д. Каждый лист фототаблицы подписывается специалистом-криминалистом и следователем; на опечатанном конверте с негативами, который приклеивается на последнем листе фототаблицы, указывается: количество негативов; по какому делу фототаблица; подпись специалиста.

Фотоснимки печатаются на матовой фотобумаге, без рамки, формат фотоснимка выбирается таким, чтобы на снимках хорошо были видны детали, объекты и элементы обстановки места происшествия. Монтаж фотоснимков производится на специальных бланках или листах плотной бумаги.

Фототаблицы и негативы с сопроводительным письмом направляются следователю или передаются ему под расписку в журнале регистрации фоторабот и расходов фотоматериалов.

Заключение

Наибольшим достоинством обычного галогеносеребряного фотографического процесса является его распространение и масштабы использования. Однако традиционный процесс имеет свои недостатки. Во-первых, в традиционном процессе присутствует многоступенчатая химическая обработка фотоматериалов с большой затратой времени и расходных материалов. Еще одним недостатком традиционной фотографии является расход серебра в виде его галогенных соединений, что значительно удорожает процесс.

Прежде всего, цифровая фотография лишена большинства недостатков традиционной фотографии:

нет необходимости в расходных светочувствительных материалах;

любая визуальная информация может быть представлена в цифровом виде;

* цифровые изображения можно хранить неограниченное время.

Преимущества компьютерной фотографии:

Оперативность -- заключается в быстроте получения изображения, возможности быстрого просмотра получаемого результата и передачи изображений по коммуникациям (связи, телефонной линии и т. п.) на большие расстояния.

Наглядность подготовительного этапа фотосъемки, то есть возможность настройки изображения в реальном времени и визуальный контроль на экране получаемого изображения в натуральную величину, а также сокращение времени для подтверждения требуемого качества снимка.

Простота метода. Для применения компьютерных технологий в криминалистической фотографии достаточного пользовательского уровня владения компьютером.

4. Широкие возможности коррекции (цифровой обработки изображений с целью выявления идентификационных признаков (изменение тонового и цветового контраста, повышение резкости удаление помех в изображении, выявление слабовидимого и т. п.)

Возможности компьютерных технологий в фотографии наилучшм образом реализуются именно в области криминалистической исследовательской фотографии.

К недостаткам компьютерной технологии относится то, что разрешение цифровых изображений, полученных с помощью устройств среднего уровня (наиболее распространенных теле-, видео- и любительских цифровых камер), на порядок ниже разрешения традиционной фотографии. Только профессиональные студийные камеры по разрешающей способности приближаются к фотопленке.

Однако следует учитывать что конечное разрешение изображения на бумаге все равно будет зависеть от разрешения печатающего устройства так, струйные принтеры способны воспроизводить 300/25,4 ~ 12 точек на мм., а лазерные 1200/25,4~48 точек на мм., поэтому можно говорить о сопоставимости получаемого качества изображений лишь в случае применения устройств ввода (печати) с высоким разрешением на печати (высокоразрешающих лазерных принтеров). В криминалистике применение профессиональных студийных камер (с высокоразрешающей ПЗС) ограничивается высокой стоимостью устройства. В связи с этим в настоящее время подобные высокоразрешающие устройства пока не доступны большинству экспертных подразделений.

ЛИТЕРАТУРА

1. Приказ № 261 от 1 июня 1993 года " О повышении эффективности экспертно - криминалистического обеспечения деятельности органов внутренних дел Российской Федерации.

2. Федеральный закон РФ от 13 декабря 2001 года "Об электронной цифровой подписи".

3. Аистов И.А., Голиков П.А., Зайцев В.В. Концепции современного естествознания. СПб.: Питер, 2005. 208 с.

4. Дмитриев Е.Н., Иванов П.Ю. Применение метода цифровой фотографии для фиксации объектов криминалистических экспертиз: Учебное пособие. - М.: ЭКЦ МВД России, 1997.

5. Дмитриев Е.Н., Иванов П.Ю., Зудин С.И. Исследование объектов криминалистических экспертиз методами цифровой обработки изображений: Учебное пособие. - М.: ЭКЦ МВД России, 1999.

6. Душеин С.В., Егоров А.Г., Зайцев В.В., Хрусталев В.Н. Криминалистическая фотография: Учебник / Под ред А.Г. Егорова. - Саратов: СЮИ МВД России, 2003

7. Криминалистика. Под ред. А.Г. Филиппова и А.Ф. Волынского. - М.: Издательство "Спарк", 1998. С. 47

8. Мельников И.Н, Ф.П. Орлов, И.А. Аистов, К.В. Рогов Естественно-научные основы экспертного исследования: учебное пособие. Саратов, СЮИ МВД России, 2004. -184 с.

9. Милчев В.М. "Цифровые фотоаппараты". Питер 2003г.

10. Морозов Б.Н. Использование криминалистической фотографии при расследовании преступлений: Учебное пособие: Ташкент - ТШВ СССР, 1990.

11. Судебная фотография: учебник./ Под редакцией заслуженного юриста РФ профессора А.Г. Егорова - СПб. Питер 2005, 366 с: ил. (серия учебник для ВУЗов.)

12. Фотографические и физические методы исследования вещественных доказательств. - М.: Госюриздат, 1962.

13. Воронков Л.Ю. "Практическое применение цифровой фотографии при проведении криминалистической экспертизы"//Вопросы криминалистики и судебной экспертизы. Юбилейный сборник научных статей, Саратов СЮИ МВД РФ, 2005. 192 ст.

14. Газизов В.А. "К вопросу об использовании цифровой фотографии в расследовании преступлений". Вестник криминалистики. Выпуск 2(6) - М.: Спарк. 2003. г стр. 81-85.

15. Ермолаев С.А., Есин Д.И. "Особенности применения цифровой фотографии в судебной экспертизе". Судебная экспертиза. Выпуск 1 ст. 89.- Саратов СЮИ МВД 2001г.

16. Сафонов А.А., Исаченко Н.П. "Цифровая фотография - современное средство технико-криминалистического обеспечения раскрытия и расследования преступлений". Судебная экспертиза. Выпуск 3. 2005 год.

17. Смагоринский Б.П., Железняков А.И. "Использование компьютерных технологий в криминалистической фотографии". Судебная экспертиза. Выпуск 1 ст. 89.- Саратов СЮИ МВД 2001г.

18. Холопов А.В. "Использование цифровых технологий фиксации информации при производстве следственных действий". Вестник криминалиста. Выпуск 3 (7) - М. Спарк. 2003 г.

Страницы: 1, 2


© 2010 Современные рефераты