Электродвигатели
Электродвигатели
Введение.
Электрические машины широко применяют на электрических станциях, в
промышленности, на транспорте, в авиации, в системах автоматического
регулирования и управления, в быту.
Электрические машины преобразуют механическую энергию в электрическую, и
наоборот. Машина, преобразующая механическую энергию в электрическую,
называются генератором. Преобразование электрической энергии в механическую
осуществляется двигателями.
Любая электрическая машина может быть использована как в качестве
генератора, так и в качестве электродвигателя. Это свойство электрической
машины изменять направление преобразуемой ею энергии называется
обратимостью машины. Электрическая машина может быть также использована для
преобразования электрической энергии одного рода тока ( частоты, числа фаз
переменного тока, напряжения постоянного тока ) в энергию другого рода
тока. Такие электрические машины называются преобразователями.
В зависимости от рода тока электроустановки, в которой должна работать
электрическая машина, они делятся на машины постоянного и переменного тока.
Машины переменного тока могут быть как однофазными, так и много фазными.
Наиболее широкое применение нашли трехфазные синхронные и асинхронные
машины, а также катекторные машины переменного тока, которые допускают
экономичное регулирование частоты вращения в широких пределах
В настоящее время асинхронные двигатели являются наиболее
распространенными электрическими машинами. Они потребляют около 50%
электроэнергии, вырабатываемой электростанциями страны. Такое широкое
распространение асинхронные электродвигатели получили из-за своей
конструктивной простоты, низкой стоимости, высокой эксплуатационной
надежности. Они имеют относительно высокий КПД: при мощностях более 1кВт
кпд=0,7:0,95 и только в микродвигателях он снижается до 0,2-0,65.
Наряду с большими достоинствами асинхронные двигатели имеют и некоторые
недостатки: потребление из сети реактивного тока, необходимого для создания
магнитного потока, в результате чего асинхронные двигатели работают с соs
=1. Кроме того, по возможностям регулировать частоту вращения они уступают
двигателям постоянного тока.
Появление трехфазных асинхронных двигателей связано с именем М.О.Доливо-
Добровольского. Эти двигатели были изобретены им в 1889г.
Принцип действия асинхронных двигателей
Наиболее распространенные среди электрических двигателей получил
трехфазный асинхронный двигатель, впервые сконструированный известным
русским электриком М.О.Доливо-Добровольским.
Асинхронный двигатель отличается простотой конструкции и несложностью
обслуживания. Как и любая машина переменного тока, асинхронный двигатель
состоит из двух основных частей - ротора и статора. Статором называется
неподвижная часть машины, ротором – ее вращающаяся часть. Асинхронная
машина обладает свойством обратимости, то есть может быть использована как
в режиме генератора, так и в режиме двигателя. Из-за ряда существенных
недостатков асинхронные генераторы практически не применяются, тогда, как
асинхронные двигатели получили очень широкое распространение.
Много фазная обмотка переменного тока создает вращающееся магнитное
поле, частота вращения которого в минуту рассчитывается по формуле:
n1=60f1/p, [1, стр. 134]
где: n- частота вращения магнитного поля статора;
f - частота тока в сети;
р - число пар полюсов.
Если ротор вращается с частотой, равной частоте вращения магнитного
поля статора, то такая частота называется синхронной.
Если ротор вращается с частотой, не равной частоте магнитного поля
статора, то такая частота называется асинхронной.
В асинхронном двигателе рабочий процесс может протекать только при
асинхронной частоте, то есть при частоте вращения ротора, не равной частоте
вращения магнитного поля.
Номинальная частота вращения асинхронного двигателя зависит от
частоты вращения магнитного поля статора и не может быть выбрана
произвольно. При стандартной частоте промышленного тока f1=50Гц возможные
синхронные частоты вращения (частоты вращения магнитного поля)
n1=60f1/p=3000/p
Работа асинхронного электродвигателя основана на явлении, названном
“диск Араго - Ленца”
Это явление заключается в следующем: если перед полосами постоянного
магнита поместить медный диск, свободно сидящий на оси, и начать вращать
магнит вокруг его оси при помощи рукоятки, то медный диск будет вращаться в
том же направлении. Это объясняется тем, что при вращении магнита его
магнитное поле пронизывает диск и индуктирует в нем вихревые токи. В
результате взаимодействия вихревых токов с магнитным полем магнита,
возникает сила, приводящая диск во вращение. На основании закона Ленца
направление всякого индуктивного тока таково, что он противодействует
причине, его вызвавшей. Поэтому вихревые токи в теле диска стремятся
задержать вращение магнита, но, не имея возможности сделать это, приводят
диск во вращение так, что он следует за магнитом. При этом частота вращения
диска всегда меньше, чем частота вращения магнита. Если бы эти частицы
почему-либо стали одинаковыми, то магнитное поле не перемещалось бы
относительно диска, и, следовательно, в нем не возникали бы вихревые токи,
то есть не было бы силы, под действием которой диск вращается.
В асинхронных двигателях постоянный магнит заменен вращающимся
магнитным полем, создаваемым трехфазной обмоткой статора при включении ее в
сеть переменного тока.
Вращающееся магнитное поле статора пересекает проводники обмотки
ротора и индуктирует в них ЭДС, то есть электродвижущую силу. Если обмотка
ротора замкнута на какое-либо сопротивление или накоротко, то по ней под
действием индуктируемой электродвижущей силы проходит ток.
В результате взаимодействия тока в обмотке ротора с вращающемся
магнитным полем обмотки статора создается вращающейся момент, под действием
которого ротор начинает вращаться по направлению вращения магнитного поля.
Если предположить, что в какой-то момент времени частота вращения
ротора оказалась равной частоте вращения поля статора, то проводники
обмотки ротора не будут пересекать магнитное поле статора и тока в роторе
не будет. В этом случае вращающийся момент станет равным нулю и частота
вращения ротора уменьшится по сравнению с частотой вращения поля статора,
пока не возникнет вращающейся момент, уравновешивающий тормозной момент,
который складывается из момента нагрузки на валу и момента сил трения в
машине.
Асинхронная машина кроме двигательного режима может работать в
генераторном режиме и режиме электромагнитного тормоза.
Генераторный режим возникает в том случае, когда ротор с помощью
постоянного двигателя вращается в направлении вращения магнитного поля с
частотой вращения, большей частоты вращения магнитного поля. Поэтому работе
асинхронной машины в генераторном режиме соответствуют скольжения в
пределах от 0 до- .Если ротор под действием посторонних сил начнет
вращаться в сторону, противоположную направлению вращения магнитного поля,
то возникает режим электромагнитного тормоза.
Режим электромагнитного тормоза начинается при n=0 и может
продолжаться теоретически до n= , поэтому скольжение находиться в
пределах от 1 до + .
Для изменения направления вращения ротора, то есть для реверсирования
двигателя, необходимо изменить направление вращения магнитного поля,
созданного обмотками статора. Это достигается изменением чередования фаз
обмоток статора, для чего следует поменять местами по отношению к зажимам
сети любые два из трех проводов, соединяющих обмотку статора с сетью.
Вне зависимости от направления вращения ротора его частота n всегда
меньше частоты вращения магнитного поля статора.
Устройство асинхронных электродвигателей.
Асинхронные электродвигатели состоят из двух частей : неподвижной –
статора и вращающейся – ротора.
Сердечник статора, представляющий собой полый цилиндр, набирают из
отдельных листов электротехнической стали толщиной 0,5-0,35мм. Для
сердечников асинхронных двигателей применяются холоднокатаные изотронные
электротехнические стали марок 2013,02312,02411 и другие. Листы или
пластины штампуют с впадинами (пазами), изолируют лаком или окалиной для
уменьшения потерь на вихревые потоки, собирают в отдельные пакеты и крепят
в станине двигателя.
К станине прикрепляют также боковые щиты с помещенными на них
подшипниками, на которые опирается вал ротора. Станину устанавливают на
фундамент.
В продольные пазы статора укладывают проводники его обмотки, которые
соединяют между собой так, что образуется трех фазная система. На щитке
машины имеется шесть зажимов, к которым присоединяются начала и концы
обмоток каждой фазы. Для подключения обмоток статора к трехфазной сети они
могут быть соединены звездой или треугольником, что дает возможность
включать двигатель в сеть с двумя разными линейными напряжениями.
Например, двигатель может работать от сети с напряжением 220 и 127в. На
щитах машины указаны оба напряжения сети, на которые рассчитан двигатель,
то есть 220/127в или 380/220в.
Для более низких напряжений, указанных на щитке, обмотка статора
соединяется треугольником, для более высоких – звездой.
При соединении обмотки статора треугольником на щитке машины верхние
зажимы объединяют перемычками с нижними, а каждую пару соединенную вместе
зажимов подключают к линейным проводам трехфазной сети. Для включения
звездой три нижних зажима на щитке соединяют перемычками в общую точку, а
верхние подключают к линейным проводам трехфазной сети.
Роторы асинхронных электродвигателей выполняют двух видов: с
короткозамкнутой и фазной обмотками. Первый вид двигателей называют
асинхронными двигателями с короткозамкнутым ротором, а второй –
асинхронными двигателями с фазным ротором или асинхронными двигателями с
контактными кольцами. Наибольшее распространение имеют двигатели с
короткозамкнутым ротором.
Сердечник ротора также набирают из стальных пластин толщиной 0,5мм,
изолированных лаком или окалиной для уменьшения потерь на вихревые токи.
Пластины штампуют с впадинами и собирают в пакеты, которые крепят на валу
машины. Из пакетов образуются цилиндры с продольными пазами, в которых
укладывают проводники обмотки ротора. В зависимости от типа обмотки
асинхронные машины могут быть с фазным и короткозамкнутым ротором.
Короткозамкнутая обмотка ротора выполняется по типу беличьего колеса. В
пазах ротора укладывают массивные стержни, соединенные на торцевых сторонах
медными кольцами. Часто короткозамкнутую обмотку ротора изготовляют из
алюминия. Алюминий в горячем состоянии заливают в пазы ротора под
давлением. Такая обмотка всегда замкнута накоротко и включение
сопротивления в нее не возможно. Фазная обмотка ротора выполнена подобно
статорной, то есть проводники соответствующим образом соединены между
собой, образуя трехфазную систему. Обмотки трех фаз соединены звездой.
Начала этих обмоток подключены к трем контактным медным кольцам,
укрепленным на валу ротора. Кольца изолированы друг от друга и от вала и
вращаются вместе с ротором. При вращении колец поверхности их скользят по
угольным или медным щеткам, неподвижно укрепленным над кольцами. Обмотка
ротора может быть замкнута на какое-либо сопротивление или накоротко при
помощи указанных выше щеток.
Двигатели с короткозамкнутым ротором проще и надежнее в эксплуатации,
значительно дешевле, чем двигатели с фазным ротором. Однако двигатели с
фазным ротором обладают лучшими пусковыми и регулировочными свойствами.
В настоящее время асинхронные двигатели выполняют преимущественно с
короткозамкнутым ротором и лишь при больших мощностях и специальных случаях
используют фазную обмотку ротора.
Асинхронные двигатели производят мощностью от нескольких десятков ватт до
15000кВт при напряжениях обмотки статора до 6кВ.
Между статором и ротором имеется воздушный зазор, величина которого
оказывает существенное влияние на рабочие свойства двигателя.
Наряду с важными положительными качествами – простой конструкции и
обслуживания, малой стоимостью – асинхронный двигатель имеет и некоторые
недостатки, из которых наиболее существенным является относительно низкий
коэффициент мощности (соs ). У асинхронного двигателя соs при полной
нагрузке может достигать значения 0,85-0,9; при недогрузках двигателя его
соs резко уменьшается и при холостом ходе составляет 0,2-0,3.
Низкий коэффициент мощности асинхронного двигателя объясняется большим
потреблением реактивной мощности, которая необходима для возбуждения
магнитного поля. Магнитный поток в асинхронном двигателе встречает на своем
пути воздушный зазор между статором и ротором, который в большей степени
увеличивает магнитное сопротивление, а следовательно, и потребляемую
двигателем мощность.
В целях повышения коэффициента мощности асинхронных двигателей воздушный
зазор стремятся делать возможно меньшим, доводя его у малых двигателей
(порядка 2-5кВт) до 0,3мм. В двигателях большой мощности воздушный зазор
приходится увеличивать по конструктивным соображениям, но все же он не
превышает 2-2,5мм.
Вал ротора вращается в подшипниках, которые укреплены в боковых щитах,
называемых подшипниковыми щитами. Главным образом это подшипники качения и
только в машинах большой мощности иногда используются подшипники
скольжения.
Подшипниковые щиты прикрепляют болтами к корпусу статора. В корпус
запрессовывают сердечник статора.
Техника безопасности.
Блоки и отдельные панели щитов, а также силовые шкафы следует перевозить
на автомашинах в вертикальном положении с закреплением растяжками и
упорами. При перемещении шкафов и щитов по прочному полу или настилу
необходимо пользоваться рожковыми ломами.
Страховку груза при подъеме производят стропами - короткими кусками цепи
или стального каната, снабженного крюками, петлями.
Устанавливать на место монтажа щиты, шкафы и пусковые ящики массой более
196Н (20 килограмм) следует не менее чем двум рабочим.
При установке конструкций, закрепляемых в стенах, потолках или полах с
помощью цементного раствора, нельзя удалять поддерживающие детали до
полного затвердения раствора.
При наличии кабельных каналов сзади или спереди щита на время его монтажа
необходимо закрыть их плитами или досками толщиной не менее 50 миллиметров.
Собранные блоки панелей до их постоянного закрепления необходимо временно
скрепить между собой и ближайшей стеной.
При установке и регулировке аппаратов щита, имеющих движущиеся части на
обратной стороне панели, необходимо принять меры для безопасности
работающих сзади щита.
Работы по установке электродвигателей на фундаменты следует выполнять в
рукавицах.
Электродвигатели массой до 50 килограмм на низкие фундаменты можно
установить вручную, но не менее, чем двумя рабочими.
Запрещается проверять пальцами совмещение отверстий в собираемых панелях
щитов или полумуфтах (для этой цели использую специальные шаблоны).
Запрещается перемещение, и установка щитов без принятия мер,
предупреждающих их опрокидывание.
При затяжке болтовых соединений полумуфт запрещается : пользоваться
вместо гаечных ключей каким-либо другим инструментом ; удлинять гаечные
ключи другими ключами, отрезками труб и так далее ; пользоваться
неисправными гаечными ключами или ключами несоответствующих размеров.
Перед пробным пуском электродвигателя необходимо проверить: крепление
фундаментных блоков и прочих элементов оборудования; отсутствие посторонних
предметов внутри или вблизи оборудования; наличие защитного заземления.
Литература.
1.Китаев Е. В. Электротехника с основами промышленной электроники. - М.:
Высшая школа, 1980.
2.Токарев Б.Ф. Электрические машины – М.:Энергоатаниздат, 1989.
3.Гусев Н.Н., Мельцер Б.Н. Устройство и монтаж электрооборудования.-Мн.:
Высшая школа,1979.
4.Дьяков В.И. Типовые расчеты по электрооборудованию:- М.: высшая
школа, 1991.
Схемы пуска асинхронного двигателя.
Существует множество схем пуска асинхронного двигателя. Можно двигатель
включить по средствам прямого пуска, то есть с помощью рубильника или
автоматического выключателя. Также асинхронный двигатель можно включить с
помощью различной коммутационной аппаратуры, то есть через контактор,
магнитный пускатель, и так далее.
На рисунке 1 изображена электрическая система пуска асинхронного
двигателя через магнитный пускатель, автоматический выключатель и кнопку
управления.
Принцип работы схемы следующий: включаем автоматический выключатель QF,
тем самым подавая напряжение на схему. Нажимаем кнопку SBC,то есть кнопку
«пуск». При этом запитается катушка магнитного пускателя КМ, магнитный
пускатель включается, при этом его силовые контакты замкнутся, замкнется
так же его вспомогательный замыкающий контакт, шунтирующий кнопку «пуск».
Кнопку «пуск» можно отпустить. Как только силовые контакты магнитного
пускателя замкнулись, включается двигатель М и начинает работать в заданном
режиме.
Для отключения двигателя необходимо нажать кнопку SBT, КНОПКУ «СТОП». При
этом мы размыкаем цепь катушки магнитного пускателя КМ. Магнитный пускатель
КМ отключится, разомкнуться его силовые контакты, разомкнется
вспомогательный замыкающий контакт КМ, и при этом двигатель М отключиться.
Существуют схемы пуска асинхронного двигателя, в которых необходим
реверс, то есть изменение направления вращения ротора двигателя. На рисунке
2 показана схема включения асинхронного двигателя с помощью реверсивного
магнитного пускателя.
Реверс мы получаем, изменяя порядок чередования фаз на двигателе или
магнитном пускателе.
Межремонтное обслуживание электродвигателей.
Межремонтное обслуживание обязательно для электрических машин,
находящихся в эксплуатации. В порядке производственно- технического
обслуживания осуществляют надзор за нагрузкой и вибрацией
электродвигателей, температурой их подшипников, контроль за температурой
входящего и выходящего воздуха в замкнутых системах вентиляции, проверку
отсутствия ненормальных шумов и искрения под щетками, уход за подшипниками
и контроль количества смазки. Перечисленные операции проводит дежурный
персонал цеха. Этот же персонал ежемесячно выполняет наружный осмотр и
чистку электродвигателей и аппаратуры от пыли и загрязнений.
Переодические осмотры электродвигателей проводят по графику,
установленному главным энергетиком. Целью осмотров является определение
технического состояния электродвигателя и выявление объема работ, которые
должны быть выполнены при очередном ремонте. Кроме того при осмотре
проводят уход за подшипниками, коллекторами, кольцами, щетками и мелкий
ремонт без разборки машин.
Мелкий ремонт и устранение незначительных неисправностей
электродвигателей проводят во время плановых перерывов в работе
технологического оборудования (в обеденные перерывы, нерабочие смены,
выходные дни). К этим работам, выполняемым оперативно-ремонтным персоналом
цеха, относится подтяжка резьбовых крепежных соединений и соединительных
муфт, затяжка разъемных контактных соединений и фундаментных болтов,
регулировка защиты и аппаратов управления, регулировка положения траверс,
уход за коллекторами, кольцами и щеточными устройствами.
Кроме указанных работ дежурный персонал цеха осуществляет постоянный
контроль за состоянием изоляции и исправностью заземляющих устройств
электроприводов, ведет надзор за соблюдением правил технической
эксплуатации электродвигателей и правил электробезопасности труда
мотористов производственных механизмов и технологического персонала цеха, а
также принимает участие в приемо-сдаточных испытаниях электродвигателей и
их систем управления и защиты после монтажа, ремонта и наладки.
Перед включением электрической машины в работу дежурный электромонтер
убеждается в отсутствии посторонних предметов на машине или внутри ее,
проверяет состояние контактных колец или коллектора, положение рукоятки
пускового реостата, которая должна быть в положении «Пуск». В небольших
машинах провертывают ротор вручную. Устройства защиты, автоматического
пуска и остановки, имеющиеся в схеме блокировки и управления, провертывают
и регулируют в соответствии с инструкцией, утвержденной главным энергетиком
предприятия.
Подготовка электрических машин к пуску после их ремонта проводится
силами заводской электролаборатории в присутствии дежурного электромонтера.
При наличии на подшипниках электрической машины указателя уровня масла в
подшипниках, проверяют наличие и нормальный уровень масла.
После пуска электрической машины контролируют нагрев корпуса машины и
подшипников, вибрацию, шум и гудение, искрение на коллекторе, биение
ременной передачи или соединительной муфты с механизмом.
Аварийная остановка работающей электрической машины производится в
следующих случаях: при несчастном случае, когда требуется остановка машины,
при появлении дыма или огня из машины или пускорегулирующей аппаратуры, при
поломке приводимого механизма, при сильной вибрации, угрожающей целостности
машины, при чрезмерном нагреве машины с заметным снижением частоты
вращения.
Неисправности электродвигателей.
Неисправности электродвигателей возникают в результате износа деталей и
старения материалов, а также при нарушении правил технической эксплуатации.
Причины возникновения неисправности и повреждений электродвигателей
различны. Нередко одни и те же неисправности вызываются действиями
различных причин, а иногда – и совместными их действием. Успех ремонта во
многом зависит от правильного установления причин всех неисправностей и
повреждений поступающего в ремонт электродвигателя.
Повреждения электродвигателей по месту их возникновения и характеру
происхождения делят на электрические и механические. К электрическим
Относят повреждение или токопроводящих частей обмоток, коллекторов,
контактных колец и листов сердечников. Механическими повреждениями считают
ослабление крепежных соединительных резьб, посадок, нарушения формы и
поверхности деталей, перекосы и поломки. Повреждения обычно имеют очевидные
признаки или легко устанавливаются измерениями.
Неисправности электрических двигателей и возможные причины их
возникновения.
|Признаки неисправности |Причины неисправности |Способ ремонта |
| Электродвигатели | переменного | тока |
| |Возможен обрыв фазы при|Наиболее вероятное |
|Двигатель при включении|соединении обмоток |место повреждения – |
|в сеть не развивает |статора звездой или |межкатушечные |
|нормальной частоты |двух фаз при соединении|соединения или |
|вращения, издает не |треугольником |окисления контактных |
|нормальный шум, при | |поверхностей замыкающих|
|проворачивание вала от | |колец (у двигателей с |
|руки работает | |фазным ротором). |
|неравномерно | |Производят ремонт |
| | |соединения, зачистку |
| | |контактов, ремонт |
|Ротор двигателя не |Обрыв фазы обмотки |обмотки |
|вращается, сильно | |То же |
|гудит, быстро | | |
|нагревается до | | |
|вышедопустимых | | |
|температур | | |
| |Обрыв в фазе ротора | |
| | |« » |
|Двигатель сильно гудит | | |
|(особенно при пуске), | | |
|ротор вращается | | |
|медленно и работает |Обрыв в одной фазе | |
|устойчиво |статора при соединении |« » |
| |обмоток треугольником | |
|Двигатель устойчиво | | |
|работает при | | |
|номинальной нагрузке на| | |
|валу, с частотой |Замкнуты между собой | |
|вращения, меньше |листы сердечника |Удалить заусеницы, |
|номинальной, ток в |статора из-за порчи |обработав места |
|одной фазе статора |межлистовой изоляции |замыкания острым |
|увеличен |или выгорания зубцов |напильником, |
|При работе |при повреждениях |разъединить листы и |
|электродвигателя на |обмотки |покрыть их лаком. При |
|холостом ходу | |сильном выгорании |
|наблюдаются местные | |листов – вырубить |
|перегревы активной | |поврежденные места, |
|стали статора | |между листами проложить|
| | |тонкий электрокартон и |
| |Витковое замыкание |пролакировать |
| |одной фазы в обмотке |Найти место повреждения|
| |статора; межфазное |обмотки и устранить |
| |замыкание в обмотках |замыкание. В случае |
| |статора |необходимости – |
|Перегрев обмотки | |перемотать поврежденную|
|статора в отдельных | |часть обмотки |
|местах при несимметрии |Неисправен вентилятор |Снять защитный кожух и |
|токов в фазах; |(система вентиляции) |отремонтировать |
|двигатель гудит и не | |вентилятор |
|развивает номинального | |Перезалить подшипники |
|момента |Одностороннее |скольжения |
|Равномерный перегрев |притяжение роторов | |
|всего электродвигателя |из-за чрезмерной | |
| |выработки вкладыша; | |
|Перегрев подшипников |плохое прилегание вала |Удалить старую смазку, |
|скольжения с кольцевой |к вкладышу |промыть подшипник и |
|смазкой |Загрязнение смазки, |заложить новую смазку. |
| |чрезмерный износ тел |Заменить подшипник |
| |качения и дорожек; |качения. Проверить |
|Перегрев подшипника |неточная центровка |установку подшипников и|
|качения, |валов в агрегате |центровку машины с |
|сопровождающийся | |агрегатом |
|ненормальным шумом | |Пережалить подшипник |
| | | |
| |Большой износ вкладыша |Заменить подшипник |
| | | |
| |Разрушение дорожек или |Дополнительно |
|Стук в подшипнике |тел качения |отбалансировать ротор, |
|скольжения |Нарушение балансировки |шкивы или полумуфты; |
|Стук в подшипнике |ротора шкивами или |произвести центровку |
|качения |муфтами; неточная |двигателя и машины; |
|Повышение вибрации при |центрова валов |снять и вновь правильно|
|работе |агрегата; перекос |установить полумуфту |
| |соединительных полумуфт|Найти место обрыва или |
| | |плохого контакта и |
| | |исправить повреждение |
| | |тока |
| | | |
| | |Чаще всего |
| | |неисправность бывает в |
| |постоянного |регуляторе возбуждения |
|Электродвигатели | | |
| |Обрыв или плохой | |
|Якорь машины не |контакт в цепи | |
|вращается под |возбуждения; короткие |Установить щетки |
|нагрузкой; если вал |или межвитковые |коллектора на нейтраль |
|развернуть усилием |замыкания в обмотке | |
|извне, двигатель идет в|независимого | |
|«разнос» |возбуждения | |
| | | |
|Частота вращения якоря |Щетки сдвинуты с | |
|меньше или больше |нейтрали соответственно|Обрыв чаще происходит в|
|номинальной при |в направлении вращения |катушке, находящейся |
|нормальных значениях |или против направления |между почерневшими |
|напряжения сети и тока |вращения вала |пластинами коллектора. |
|возбуждения | |Найти место повреждения|
|Щетки одного знака |Неодинаковы расстояния |и отремонтировать |
|искрят сильнее щеток |между рядами щеток по |Проверить пайку всех |
|другого знака |окружности коллектора; |соединений между |
| |межвитковые замыкания в|обмоткой якоря и |
| |обмотках одного из |почерневшими пластинами|
| |главных или добавочных |коллектора. |
| |полюсов |Обнаруженные |
|Щетки искрят; |Плохой контакт или |неисправности |
|образуется почернение |короткое замыкание в |соединения – пропаять |
|пластин коллектора, |обмотке якоря; обрыв в | |
|расположенных на |катушке, присоединенной| |
|определенном расстоянии|к почерневшим пластинам|Затянуть пластины |
|друг от друга; после | |коллектора и проточить |
|чистки чернеют те же | |его поверхность |
|пластины |Ослабла прессовка | |
|Чернеют каждая |коллектора или | |
|вторая-третья пластины |выступает миканит | |
|коллектора |дорожек изоляции |Двигатель капитально |
| |Недопустимый износ |ремонтируют или |
|При нормальном нагреве |коллектора |заменяют на новый |
|двигателя и совершенно | | |
|исправных щеточном | | |
|аппарате и поверхности | | |
|коллектора щетки искрят| |Проточить и |
| |Выступают дорожки |прошлифовать коллектор |
| |изоляции коллектора; | |
|Повышенное искрение |коллектор «бьет» | |
|щеток от вибрации, | | |
|перегрев коллектора и | | |
|щеток, потемнение | |Проверить положение |
|большей части |Щетки смещены с |щеток и установить их |
|коллектора |централи |по заводским меткам, |
| | |расположенным на |
|При вращении якоря | |траверсе |
|двигателя в разных | |Проверить и при |
|направлениях щетки |Недостаточное |необходимости укоротить|
|искрят с различной |прилегание щеток к |нажимную пружину |
|интенсивностью |коллектору; дефект |щеткодержателей или |
|Повышенное искрение |рабочей поверхности |заменить их новой. |
|щеток на коллекторе |щеток; неодинаковое |Отшлифовать поверхности|
| |давление щеток на |щеток. Установить щетки|
| |коллектор; заклинивание|в соответствии с |
| |щеток в обоймах |рекомендациями |
| |щеткодержателя |завода-изготовителя, |
| | |применив щетки одной |
| | |марки |
Неисправности часто можно установить лишь по косвенным признакам. При
этом приходится производить не только измерения, но и сопоставлять
обнаруженные факты с известными из опыта и делать соответствующие выводы.
Предремонтные испытания. Для электродвигателей, поступающих в ремонт,
когда это, возможно, следует проводить предремонтные испытания.
Объем испытаний устанавливают в каждом случае в зависимости от вида
ремонта, результатов анализа карт осмотра и внешнего состояния
электродвигателя. Работа по предметному выявлению неисправности машин
называется дефектацией. Перед испытаниями электродвигатель подготавливают к
работе с соблюдением всех требований правил технической документации:
измеряют размеры зазоров в подшипниках и воздушные зазоры, осматривают
доступные узлы и детали и оценивают возможность их использования при
испытаниях. Непригодные детали по возможности заменяют исправными (без
разборки)
В асинхронных двигателях на холосто ходу измеряют ток холостого хода,
контролируют его симметрию и оценивают визуально или с помощью инструментов
все параметры, подлежащие контролю при эксплуатации.
В электродвигателях с фазным ротором и двигателях постоянного тока
оценивают работу контактных колец, коллекторов. Щеточного аппарата.
Нагружая электродвигатель в допустимой мере оценивают влияние нагрузки на
работу его основных узлов, контролируют равномерность нагрева доступных
частей, вибрацию, определяют неисправности и устанавливают возможные их
причины.
Типичные признаки и причины неисправностей асинхронных электродвигателей
при номинальных параметрах питающей сети и правильном включении обмоток
электродвигателя приведены.
Виды и объемы ремонтов.
В соответствии с Правилами технической эксплуатации в системе планово-
предупредительных ремонтов электрооборудования (ППРЭО) предусматривают два
вида ремонтов: текущий и капитальный.
Текущий ремонт. Проводится с переодичностью (установленной главным
энергетиком) для всех электродвигателей, находящихся в эксплуатации. В
типовой объем работ при текущем ремонте входят следующие виды работ:
наружный осмотр электродвигателя, промывка и замена смазки в подшипниках и
при необходимости замена подшипников качения, проверка и ремонт
вентиляторов и чистка вентиляционных устройств и каналов, чистка и продувка
сжатым воздухом обмоток, контактных колец, коллекторов щеточного аппарата,
проверка состояния крепления лобовых обмоток, шлифования контактных колец и
коллекторов, регулировка щеточного аппарата, протирка и замена щеток,
продороживание коллекторов, проверка и затяжка всех резьбовых крепежных
соединений, проверка защитного соединения, проведение профилактических
испытаний.
Капитальный ремонт. Проводят в условиях электроремонтного цеха (ЭРЦ)
или специализированного ремонтного предприятия (СРП). В объем капитального
ремонта входят работы, предусмотренные текущим ремонтом. Он включает в себя
также следующие виды работ: полную разборку электродвигателя, проверку всех
узлов и деталей и их дефиктация, ремонт станин и подшипников щитов,
магнитопроводов ротора и статора, валов, вентиляторов, роторов,
коллекторов, устранения местных дефектов изоляции обмоток и соединений,
проведение послеремонтных испытаний.
Переодичность капитальных ремонтов электродвигателей Правилами
технической эксплуатации не устанавливается. Она определяется лицом,
ответственным за электрохозяйство предприятия на основании оценок общей
продолжительности работы электродвигателей и местных условий их
эксплуатации.
После транспортировки для монтажа электродвигателей на фундаментах
производят следующие дополнительные работы: выверка положения
электродвигателя, центровка и соосность валов электродвигателя и агрегата,
крепление, подливка оснований. Частичная замена обмоток целесообразна в
случае повреждения нескольких однослойных катушек или стержневых обмоток
(частичная замена двухслойных обмоток статора нецелесообразна, так как при
этом повреждается изоляция исправных катушек).
Провода снятые с поврежденных электродвигателей в период ремонта,
используют повторно. В этом случае необходимо восстановить электрические и
механические параметры обмоток до их первоначальных значений. Для очистки
проводов от их старой изоляции применяют отжиг в печах, а механическое
отделение остатков изоляции от проводов – волочением через деревянные или
текстолитовые клицы. После рихтовки провода обматывают новой изоляцией на
станках.
При ремонте статорных обмоток из жестких катушек медные провода
прямоугольного сечения используют повторно. Изоляцию восстанавливают с
помощью обматывания лентой внахлестку, перекрывая на 1:2 ширины
изолировочной ленты. Замену коллекторов проводят лишь при значительных
повреждениях (пяти и более коллекторных пластин) с пробоем и выгоранием
изоляции.
Кроме того, коллекторы подлежат замене целиком, если запас размера
коллекторных пластин по высоте не обеспечивает их естественного износа без
уменьшения этого размера ниже допустимого предела за время до следующего
капитального ремонта.
Сушка, пропитка и испытание обмоток. Изготовление обмотки статоров,
роторов и якорей подвергаются сушке в специальных печах и сушильных камерах
при температуре 105-120С. С помощью сушки из гигроскопических изоляционных
материалов (электрокартон, хлопчатобумажные ленты) удаляется влага, которая
препятствует глубокому проникновению пропиточных лаков в поры изоляционных
деталей при пропитке обмотки.
Сушку проводят в инфракрасных лучах специальных электрических ламп, или
с использованием горячего воздуха в сушильных камерах. После просушки
обмотки пропитывают лаками БТ-987, БТ-95, БТ-99, ГФ-95 в специальных
пропиточных ваннах. Помещения оборудуются приточно-вытяжной вентиляцией.
Пропитка проводится в ванне, заполненной лаком и оборудованной подогревом
для лучшей проникающей способности лака в изоляцию обмотки провода.
С течением времени лак в ванне становится более вязким и густым, в связи
с улетучиванием растворителей лаков. В результате этого сильно снижается их
способность проникать в изоляцию проводов обмотки, особенно в тех случаях,
когда провода обмотки плотно уложены в пазы сердечников. Поэтому при
пропитке обмоток постоянно проверяют густоту и вязкость пропиточного лака в
ванне и периодически добавляют растворители. Обмотки пропитывают до трех
раз в зависимости от условий их эксплуатации.
Для экономии лака, расходуемого за счет прилипания к стенкам станины
статора, применяют другой метод пропитки обмотки с использованием
специального приспособления. Готовый к пропитке статор с обмоткой
устанавливают на крышку специального бака с лаком, предварительно закрыв
заглушкой коробку вывода статора. Между торцом статора и крышкой бака
прокладывают уплотнение. В центре крышки имеется труба, нижний конец
которой располагается ниже уровня лака в баке.
Для пропитки обмотки статора в бак по патрубку подается сжатый воздух
давлением 0,45 – 0,5 МПа, с помощью которого уровень лака поднимается до
заполнения всей обмотки, но ниже верхней части кромки станины статора. По
окончании пропитки выключают подачу воздуха и выдерживают статор примерно
40мин (для слива остатков лака в бак), снимают заглушку с коробки выводов.
После этого статор направляют в сушильную камеру.
Это же приспособление используют для пропитки обмоток статора под
давлением. Необходимость в этом возникает в тех случаях, когда в пазах
статора очень плотно уложены провода и при обычной пропитке (без давления
лака)лак не проникает во все поры изоляции витков. Процесс пропитки под
давлением заключается в следующем. Статор устанавливается как и в первом
случае, но сверху закрывается крышкой. Сжатый воздух подается в бак и
цилиндр, который прижимает крышку к торцу станины статора через
установленную прокладку уплотнения. Поворотная траверса, укрепленная на
колонке, и винтовое соединение крышки с цилиндром позволяют использовать
это приспособление для пропитки обмоток статоров различной высоты.
Пропиточный лак в резервуар подается из емкости, расположенной в
другом, не пожароопасном помещении. Лак и растворители являются токсичными
и пожароопасными и в соответствии с правилами охраны труда работа с ними
должна проводиться в защитных очках, рукавицах, резиновом фартуке в
помещениях, оборудованных приточно-вытяжной вентиляцией.
После окончания пропитки обмотки машин сушат в специальных камерах.
Воздух, подаваемый в камеру принудительной циркуляцией, нагревается
электрическими калориферами, газовыми или паровыми подогревателями. Во
время сушки обмоток ведется непрерывный контроль за температурой в
сушильной камере и температурой выходящего из камеры воздуха. В начале
сушки обмоток температуру в камере создают несколько ниже (100-110с). При
этой температуре удаляются растворители из изоляции обмоток и наступает
второй период сушки – запекания лаковой пленки. В это время на 5-6 часов
повышают температуру сушки обмоток до 140с (для класса изоляции А). Если
после нескольких часов сушки сопротивление изоляции обмоток остается
недостаточным, то отключают подогрев и дают остыть обмоткам до температуры,
на 10-15С превышающей температуру окружающего воздуха, после чего вновь
включают подогрев и продолжают процесс сушки.
Процессы пропитки и сушки обмоток на энергоремонтных предприятиях
совмещены и, как правило, механизированы.
В процессе изготовления и ремонта обмоток машин проводят необходимые
испытания изоляции катушек. Испытательное напряжение должно быть таким,
чтобы в процессе испытаний выявлялись дефектные участки изоляции и не
повреждалась изоляция исправных обмоток. Так, для катушек напряжением 400В
испытательное напряжение недемонтированной из пазов катушки в течении 1 мин
должно быть равно 1600В, а после соединения схемы при частичном ремонте
обмотки – 1300В.
Сопротивление изоляции обмоток электродвигателей напряжением 500В после
пропитки и сушки должно быть не менее 3Мом для обмоток статора и 2Мом – для
обмоток ротора после полной перемотки и 1Мом и 0,5Мом соответственно после
частичной перемотки. Эти значения сопротивлений изоляции обмоток
рекомендованы, исходя из практики ремонта и эксплуатации отремонтированных
электрических машин.
Монтаж электродвигателей.
После испытания электродвигателей определяют возможность их включения
без сушки. Электродвигатели напряжением до 1000В включают без сушки, если
сопротивление изоляции их обмоток при температуре от 10С до 30С не менее
0,5Мом. Если указанные условия не удовлетворяются, электродвигатели должны
быть подвергнуты сушке.
Методы сушки электрических машин. Метод сушки внешним нагревом
применяют для сильно увлажненных машин. Машину помещают в теплоизоляционную
камеру, продуваемую горячим воздухом от воздуходувки.
Инфракрасную сушку производят с помощью теплоизлучателей, в качестве
которых применяют зеркальные лампы мощностью 250 или500Вт, располагаемые на
расстоянии 200-400мм от нагреваемой поверхности. Лампы размещают на
расстоянии 200-300мм одну от другой в шахматном порядке. Температуру
регулируют включением и отключением части ламп.
Методы инфракрасной сушки и сушки внешним нагревом применяют для любых
электрических машин. Напряжение питания пониженное. Роторы машин
переменного тока при сушке от внешних источников затормаживаются. Включение
и отключение тока производят плавным изменением сопротивления реостата.
Режим сушки. Перед сушкой машину тщательно очищают и продувают сжатым
воздухом. Корпус машины надежно заземляют. Принимают меры по уменьшению
теплопотерь: перекрывают деревянными щитами фундаментные ямы, ограждают
машину брезентовыми палатками. В процессе сушки первоначальный нагрев
проводят медленно (особенно при сильно отсыревшей изоляции крупных машин).
Средняя температура допустимого нагрева 65-70С. Разброс температур нагрева
различных частей машины должен быть в пределах 20С. Температуру измеряют
термометрами, встроенными или закладными термоиндикаторами, а также методом
сопротивления.
В процессе сушки через каждый час (или два часа) измеряют следующие
параметры: температуры в контрольных точках машины и окружающего воздуха,
сопротивления изоляции каждой обмотки от корпуса и изоляции между
обмотками. Коэффициент абсорбции определяют в холодном состоянии машины в
начале сушки, после ее нагрева до установившейся температуры, в конце сушки
(для принятия решения о ее прекращении) и после сушки при остывании машины.
Сушка заканчивается после того, как устанавливается постоянное
сопротивление изоляции при неизменной температуре в течение 3-8ч. Общая
продолжительность сушки машин малой и средней мощности должна быть не менее
15-20ч.
Отремонтированный и испытанный электродвигатель транспортируют к месту
установки и монтируют в следующем порядке. Устанавливают на плиту
электродвигатель и выверяют положение его вала так, чтобы наилучшим образом
обеспечить совпадение в пространстве осей всех валов.
Центровка валов с общей осью обычно производится в два этапа.
Предварительную центровку производят по рискам, нанесенным на ободы
полумуфт. Риски наносят с помощью центроискателей на каждой полумуфте
соединяемых валов через 90 .Сначала накладывают контрольную линейку на обе
полумуфты в четырех точках окружности, сдвинутых на 90 , и убеждаются в
отсутствии параллельного сдвига осей валов. Если оси сдвинуты, то на риску
базовой полумуфты накладывают контрольную линейку и, вращая центрируемый
вал, совмещают одну из рисок его полумуфты с базовой риской. При совпадении
обеих рисок с кромкой линейки без углового расхождения линейку переносят на
следующие две риски и так далее. В случае, когда угловое расхождение осей
валов установлено, перемещают центрируемый вал до совпадения рисок.
Предварительная центровка считается достигнутой, если совпадают все четыре
пары рисок соединяемых полумуфт. Для окончательной центровки малогабаритных
тихоходных машин применяют монтажные скобы. Центровка может производиться
по втулкам или по ободам полумуфт. Для центровки валов крупных быстроходных
машин используют более сложные приспособления, в которых несоосность
измеряют индикаторами с точным отсчетом по шкале.
Окончательная центровка заключается в измерении зазоров «а» и «в» в
четырех положениях валов, совместно поворачиваемых ступнями на 90 .
Разность как зазоров «а», так и зазоров «в» в диаметрально противоположных
направлениях должна быть меньше допустимых отклонений.
В электроприводах с двигателями мощностью до 100кВт нередко применяют
ременные передачи. Валы электродвигателя и производственного механизма в
этом случае располагаются параллельно. Для сопряжения валов передачей
выверяют горизонтальность их осей валовыми уровнями и вертикальность
торцевых плоскостей шкивов рамными уровнями. Затем совмещают поперечные оси
симметрии обеих шкивов с осью ременной передачи. При одинаковой ширине
шкивов пользуются контрольной линейкой. Ее располагают в плоскости осей
обоих валов и прижимают к кромкам обработанных торцов обоих шкивов,
добиваясь касания обоих ободов шкивов во всех четырех точках. Если ширина
шкивов неодинакова, их расположение регулируют выравниванием зазоров по обе
стороны от узкого шкива между его ободами и двумя контрольными линейками,
наложенными на торцы широкого шкива. Допустимое отклонение измерений как
односторонних зазоров, так и разности сумм накрест лежащих зазоров по ободу
узкого шкива не должны превышать 0,3мм.
Для клиноременной передачи допускается осевой сдвиг канавок шкивов не
более 16мм на 1000мм расстояния между осями валов.
Предварительно затягивают до отказа фундаментные болты вручную
нормальными ключами. Контролируют сохранность центровки, осуществляют
окончательную затяжку резьбовых креплений тарированными ключами.
Достаточность затяжки контролируют щупом толщиной 0,05мм, который должен
проникать в стык резьбового соединения не глубже, чем на 0,5мм.
Проводят пробный пуск электродвигателя: его включают в сеть только на
несколько секунд и повторяют включение несколько раз. При благополучном
исходе включений «толчком» электродвигатель пускают на 20-30мин,
контролируя работу систем смазки, охлаждения и отсутствия ненормальных
шумов в машине. Перед остановом измеряют температуру подшипников. Если
признаков ненормальной работы не обнаружено, обкатывают электродвигатель на
холостом ходу и производят испытание на холостом ходу и под нагрузкой.
Время обкатки устанавливают по данным завода-изготовителя для нового
электродвигателя.
Регулирование частоты вращения асинхронных двигателей.
Частота вращения ротора в минуту определяется следующим выражением:
n2=n1(1-s)=60f1/p(1-s).[ 1,стр.147].
Из этого выражения видно, что частоту вращения ротора можно регулировать
изменением любой из трех величин, определяющих ее, то есть изменением
частоты тока сети f1, числа пар полюсов р и скольжения s.
Регулирование частоты вращения асинхронных двигателей изменением частоты
тока сети сложно, так как необходим какой-либо регулирующий преобразователь
частоты или генератор. Поэтому такой способ не имеет широкого применения.
Число полюсов машины может быть изменено, если на статоре имеется
несколько (обычно две) обмоток с разным числом полюсов или одна обмотка,
которую можно переключать на различное число полюсов, или две обмотки,
каждая из которых может переключаться на различное число полюсов.
Если изменить направление тока в одной из катушек, включив ее встречно с
другой, то обмотка может переключаться на два полюса. При изменении числа
полюсов обмотки статора изменится частота вращения его магнитного поля, а
следовательно, и частота вращения ротора двигателя. Этот способ
регулирования частоты вращения асинхронного двигателя экономен, но
недостатком его является ступенчатое изменение частоты. Кроме того,
стоимость такого двигателя значительно возрастает вследствие усложнения
габаритов машины.
Регулирование частоты вращения изменением числа полюсов применяют в
двигателях с короткозамкнутым ротором; в двигателях с фазным ротором этот
способ не используется, так как приходится одновременно изменять число
полюсов обмотки статора и число полюсов обмотки вращающегося ротора, что
весьма сложно.
Заводы выпускают двигатели с синхронными частотами вращения 500-750-1000-
1500 оборотов в минуту. Такие двигатели имеют на статоре две обмотки,
каждая из которых может быть переключена на разное число полюсов.
Скольжение можно изменить регулировочным реостатом, введенным в цепь
обмотки ротора, а также регулированием напряжения сети. При регулировании
напряжения питающей сети изменяется вращающий момент двигателя
пропорционально квадрату напряжения. При изменении вращающего момента
уменьшается частота вращения ротора, то есть увеличивается скольжение.
Регулировочный реостат включается в цепь обмотки фазного ротора подобно
пусковому реостату, но в отличие от пускового он рассчитывается на
длительное прохождение тока.
При включении регулировочного реостата ток в роторе уменьшается, что
вызовет снижение вращающего момента двигателя, и, следовательно, уменьшения
частоты вращения, или увеличения скольжения. При увеличении скольжения
увеличивается электродвижущая сила и ток в роторе. Частота вращения или
скольжения будет уменьшаться до восстановления равновесия моментов, то есть
пока ток в роторе не примет своего начального значения.
Этот способ регулирования частоты вращения может быть использован только
в двигателях с фазным ротором и несмотря на то ,что является неэкономичным
(так как в регулировочном реостате происходит значительная потеря энергии)
имеет широкое распространение.
План.
1)Введение ст.1-2
2)Устройство асинхронного электродвигателя ст.3-6
3)Принцип действия асинхронного электродвигателя ст.7-9
4)Схема пуска асинхронного электродвигателя ст.10-13
5)Регулирование частоты вращения асинхронного электродвигателя ст.14-15
6)Межремонтное обслуживание асинхронного электродвигателя ст.16-17
7)Не исправности электродвигателя ст.18
8) Не исправности электродвигателя и возможные причины их возникновения
ст.19-22
9)Виды и объем ремонта ст.23-26
10)Монтаж электродвигателя ст.27-29
11)Техника безопасности ст.30-31
12)Литература ст.32
13)План ст.33
.
|