Вычисление определённого интеграла с помощью метода трапеций на компьютере
Вычисление определённого интеграла с помощью метода трапеций на компьютере
МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ
КУРСОВАЯ РАБОТА
тема:
«Вычисление определённого интеграла
с помощью метода трапеций
на компьютере»
Выполнил:
студент ф-та
ЭОУС-1-12
Зыков И.
Принял:
Зоткин С. П.
Москва 2001
1. Введение:
Определенный интеграл от функции, имеющей неэлементарную первообразную,
можно вычислить с помощью той или иной приближенной формулы. Для решения
этой задачи на компьютере, можно воспользоваться формулами прямоугольников,
трапеций или формулой Симпсона. В данной работе рассматривается формула
трапеций.
Пусть I=( f(x)dx, где f(x) – непрерывная функция, которую мы для
наглядности будем предполагать положительной. Тогда I представит собой
площадь криволинейной трапеции, ограниченной линиями x=a, x=b, y=0, y=f(x).
Выберем какое-нибудь натуральное число n и разложим отрезок [a,b] на n
равных отрезков при помощи точек x0=a
#include
#include
main()
{
double a,b,er,eps,f(double),s,trap(double,double,double,double(*)(double));
clrscr();
printf("\n Задайте пределы интегрирования и точность: ");
scanf ("%lf%lf%lf",&a,&b,&eps);
s=trap(a,b,eps,f);
printf("\n Интеграл от a=%3.2lf до b=%3.2lf равен %lf",a,b,s);
getch();
}
double f(double x)
{
return x*x*x+2*(x*x)-3*x-8;
}
double trap(double a,double b,double eps,double(*f)(double))
{
double h,s,s0,s1,sn;
int i,n;
s=1; sn=101;
n=4;
s0=(f(a)+f(b))/2;
s1=f((a+b)/2);
while(fabs(s-sn)>eps){
sn=s;
h=(b-a)/n;
for(i=0; i eps
( ydx ( ((b-a)/2* n)*(Yкр+2*Yпром)
Вывод S
[pic]
|