Рефераты

Волоконно-оптические системы

|модуляцией | | | | | |

|интенсивности в | | | | | |

|другом | | | | | |

|С одним источником | | | | + | + |

|излучения | | | | | |

|С модовым разделением| | | + | | |

|С когерентным | + | + | + | | |

|излучением для обоих | | | | | |

|направлений с разными| | | | | |

|видами модуляции | | | | | |

5. Выводы по главе

В главе рассмотрены основополагающие принципы построения волоконно-

оптических систем передачи на городской телефонной сети.

На ГТС ВОСП используются для уплотнения соединительных линий, для

которых характерна небольшая длина, что позволяет отказаться от

оборудования регенераторов в колодцах телефонной канализации. Волоконно-

оптические системы передачи ГТС строятся на базе стандартного

каналообразующего оборудования ИКМ, что позволяет легко модернизировать

существующие соединительные линии для работы по оптическому кабелю.

В качестве линейного кода ВОСП ГТС используется код CMI, который

позволяет выделять последовательность тактовых импульсов, контролировать

величину ошибки. Число одноименных следующих друг за другом символов не

превышает двух – трех, что положительно сказывается на устойчивости работы

ВОСП.

Практически во всех волоконно-оптических системах передачи,

рассчитанных на широкое применение, в качестве источников излучения сейчас

используются полупроводниковые светоизлучающие диоды и лазеры. Для них

характерны в первую очередь малые габариты, что позволяет выполнять

передающие оптические модули в интегральном исполнении. Кроме того, для

полупроводниковых источников света характерны невысокая стоимость и

простота обеспечения модуляции.

В качестве приемников света в волоконно-оптических систем передачи на

ГТС применяются лавинные фотодиоды, достоинством которых является высокая

чувствительность. Однако, при использовании лавинных фотодиодов нужна

жесткая стабилизация напряжения источника питания и температурная

стабилизация, поскольку коэффициент лавинного умножения, а следовательно

фототок и чувствительность ЛФД, сильно зависит от напряжения и температуры.

Передача оптических сигналов в ВОСП на ГТС осуществляется в

многомодовом режиме, поскольку соединительные линии относительно коротки и

дисперсионные процессы в оптических волокнах незначительны. На сегодняшний

день для городской телефонной сети используются кабели марки ОК имеющие

четыре или восемь ступенчатых многомодовых волокон.

В ближайшие годы потребность в увеличении числа каналов будет расти.

Наиболее доступным способом увеличения пропускной способности ВОСП в два

раза является передача по одному оптическому волокну двух сигналов в

противоположных направлениях. Сегодня на городских сетях связи находят

применение одноволконные ВОСП с оптическими разветвителями и со

спектральным уплотнением.

2 Волоконно-оптические датчики

Первые попытки создания датчиков на основе оптических волокон можно

отнести к середине 1970-х годов. Публикации о более или менее приемлемых

разработках и экспериментальных образцах подобных датчиков появились во

второй половине 1970-х годов. Однако считается, что этот тип датчиков

сформировался как одно из направлений техники только в начале 1980-х годов.

Тогда же появился и термин "волоконно-оптические датчики" (optical fiber

sensors). Таким образом, волоконно-оптические датчики — очень молодая

область техники.

2.1 От электрических измерений к электронным

Конец X IX века можно считать периодом становления метрологии в ее

общем виде. К тому времени произошла определенная систематизация в области

электротехники на основе теории электромагнетизма и цепей переменного тока.

До этого физические величины измерялись главным образом механическими

средствами, а сами механические измерения распространены были

незначительно. Электрические же измерения ограничивались едва ли не

исключительно только электростатическими. Можно сказать, что метрология,

развиваясь по мере прогресса электротехники, с конца XIX века стала как бы

ее родной сестрой.

Рассмотрим этапы и успехи этого развития. В течение нескольких

десятков лет, вплоть до второй мировой войны, получили распространение

электроизмерительные приборы, принцип работы которых основан на силах

взаимодействия электрического тока и магнитного поля (закон Био — Совара).

Тогда же эти приборы внедрялись в быстро развивающуюся промышленность.

Особенность периода в том, что наука и техника, причастные к

электроизмерительным приборам, становятся ядром метрологии и измерительной

индустрии.

После второй мировой войны значительные успехи в развитии электроники

привели к громадным переменам в метрологии. В пятидесятых годах появились

осциллографы, содержащие от нескольких десятков до сотни и более

электронных ламп и обладающие весьма высокими функциональными

возможностями, а также целый ряд подобных устройств, которые стали широко

применяться в сфере производства и научных исследований. Так наступила эра

электронных измерений. Сегодня, по прошествии 30 лет, значительно

изменилась элементная база измерительных приборов. От электронных ламп

перешли к транзисторам, интегральным схемам (ИС), большим ИС (БИС). Таким

образом, и сегодня электроника является основой измерительной техники.

2.2 От аналоговых измерений к цифровым

Однако между электронными измерениями, которые производились в 1950-e

годы, и электронными измерениями 1980-х годов большая разница. Суть ее

заключается в том, что во многие измерительные приборы введена цифровая

техника.

Обычно электронный измерительный прибор имеет структуру, подобную

изображенной на рис. 1. Здесь датчик в случае измерения электрической

величины (электрический ток или напряжение) особой роли не играет, и

довольно часто выходным устройством такого измерителя является индикатор.

Однако при использовании подобного прибора в какой-либо измерительной

системе сплошь и рядом приходится сталкиваться с необходимостью обработки

сигнала различными электронными схемами. Внедрение цифровой измерительной

техники подразумевает в идеале, что цифровой сигнал поступает

непосредственно от чувствительного элемента датчика. Но пока это скорее

редкость, чем правило. Чаще же всего этот сигнал имеет аналоговую форму, и

для него на входе блока обработки данных установлен аналого-цифровой

преобразователь (АЦП). Цифровая же техника используется главным образом в

блоке обработки данных и в выходном устройстве (индикаторе) или в одном из

них.

[pic]

Рис. 2.1 - Типовая структура электронного измерителя

Основное преимущество использования цифровой техники в процессе

обработки данных — это сравнительно простая реализация операций высокого

уровня, которые трудно осуществимы с помощью аналоговых устройств. К таким

операциям относятся подавление шумов, усреднение, нелинейная обработка,

интегральные преобразования и др. При этом функциональная нагрузка на

чувствительный элемент датчика уменьшается и снижаются требования к

характеристикам элемента. Кроме того, благодаря цифровой обработке

становится возможным измерение весьма малых величин.

2.3 Цифризация и волоконно-оптические датчики

Важно отметить, что одним из этапов развития волоконно-оптических

датчиков было функциональное расширение операций, выполняемых в блоке

обработки данных датчика, путем их цифризации и, что особенно существенно,

упрощение операций нелинейного типа. Ведь в волоконно-оптических датчиках

линейность выходного сигнала относительно измеряемой физической величины

довольно часто неудовлетворительна. Благодаря же цифризации обработки эта

проблема теперь частично или полностью решается.

Нечего и говорить, что важный стимул появления волоконно-оптических

датчиков — создание самих оптических волокон, о которых будет рассказано

ниже, а также взрывообразное развитие оптической электроники и волоконно-

оптической техники связи.

2.4 Становление оптоэлектроники и появление оптических волокон.

2.4.1 Лазеры и становление оптоэлектроники

Оптоэлектроника — это новая область науки и техники, которая появилась

на стыке оптики и электроники. Следует заметить, что в развитии

радиотехники с самого начала ХХ века постоянно прослеживалась тенденция

освоения электромагнитных волн все более высокой частоты. Вытекающее из

этого факта предположение, что однажды радиотехника и электроника достигнут

оптического диапазона волн, становится все более и более достоверным,

начиная с 1950-х годов. Годом возникновения оптоэлектроники можно считать

1955-й, когда Е. Лоебнер (Loеbner Е. Е. Optoelectronic devices and

networks//Proc. 1ЕЕЕ. 1955. V. 43. N 12. Р. 1897 — 1906) описал

потенциальные параметры различных оптоэлектронных устройств связи, нынче

называемых оптронами, т. е. когда были обсуждены основные характеристики

соединения оптического и электронного устройств.

С тех пор оптоэлектроника непрерывно развивается, и полагают, что до

конца ХХ века она превратится в огромную отрасль науки и техники,

соизмеримую с электроникой. Появление в начале 1960-х годов лазеров

способствовало ускорению развития оптоэлектроники. Потенциальные

характеристики лазеров описаны еще в 1958 г., а уже в 1960 г. был создан

самый первый лазер — газовый, на основе смеси гелия и неона. Генерирующие

непрерывное излучение при комнатной температуре полупроводниковые лазеры,

которые в настоящее время получили наиболее широкое применение, стали

выпускаться с 1970 г.

2.4.2 Появление оптических волокон

Важным моментом в развитии оптоэлектроники является создание

оптических волокон. Особенно интенсивными исследования стали в конце 1960-x

годов, а разработка в 1970 г. американской фирмой "Корнинг" кварцевого

волокна с малым затуханием (20 дБ/км) явилась эпохальным событием и

послужила стимулом для увеличения темпов исследований и разработок на все

1970-е годы.

На рис. 2 показано снижение минимальных потерь передачи для различных

оптических волокон на протяжении минувших десяти с лишним лет. Можно

заметить, что для кварцевых оптических волокон потери за 10 лет (в 1970-е

годы) уменьшились примерно на два порядка.

Изначальной и главной целью разработки оптических волокон было

обеспечение ими оптических систем связи. Тем не менее в 1970-е годы, когда

в технике оптических волокон применительно к оптическим системам связи были

достигнуты уже значительные успехи, влияние волокон на развитие волоконно-

оптических датчиков, о которых пойдет речь в этой книге, оказалось

несколько неожиданным.

[pic]

Рис. 2.2 - Снижение минимальных потерь передачи для различных типов

оптических волокон

2.4.3 Одно- и многомодовые оптические волокна

[pic]

Рис. 2.3 - Одномодовое (а) и многомодовое (б) оптическое волокно

Оптическое волокно обычно бывает одного из двух типов: одномодовое, в

котором распространяется только одна мода (тип распределения передаваемого

электромагнитного поля), и многомодовое — с передачей множества (около

сотни) мод. Конструктивно эти типы волокон различаются только диаметром

сердечника — световедущей части, внутри которой коэффициент преломления

чуть выше, чем в периферийной части — оболочке (рис. 3).

В технике используются как многомодовые, так и одномодовые оптические

волокна. Многомодовые волокна имеют большой (примерно 50 мкм) диаметр

сердечника, что облегчает их соединение друг с другом. Но поскольку

групповая скорость света для каждой моды различна, то при передаче узкого

светового импульса происходит его расширение (увеличение дисперсии). По

сравнению с многомодовыми у одномодовых волокон преимущества и недостатки

меняются местами: дисперсия уменьшается, но малый (5...10 мкм) диаметр

сердечника значительно затрудняет соединение волокон этого типа и введение

в них светового луча лазера.

Вследствие этого одномодовые оптические волокна нашли преимущественное

применение в линиях связи, требующих высокой скорости передачи информации

(линии верхнего ранга в иерархической структуре линий связи), а

многомодовые чаще всего используются в линиях связи со сравнительно

невысокой скоростью передачи информации. Имеются так называемые когерентные

волоконно-оптические линии связи, где пригодны только одномодовые волокна.

В многомодовом оптическом волокне когерентность принимаемых световых волн

падает, поэтому его использование в когерентных линиях связи непрактично,

что и предопределило применение в подобных линиях только одномодовых

оптических волокон.

Напротив, хотя при использовании оптических волокон для датчиков

вышеуказанные факторы тоже имеют место, но во многих случаях их роль уже

иная. В частности, при использовании оптических волокон для когерентных

измерений, когда из этих волокон формируется интерферометр, важным

преимуществом одномодовых волокон является возможность передачи информации

о фазе оптической волны, что неосуществимо с помощью многомодовых волокон.

Следовательно, в данном случае необходимо только одномодовое оптическое

волокно, как и в когерентных линиях связи. Тем не менее, на практике

применение одномодового оптического волокна при измерении нетипично из-за

небольшой его дисперсии. Короче говоря, в сенсорной оптоэлектронике, за

исключением датчиков-интерферометров, используются многомодовые оптические

волокна. Это обстоятельство объясняется еще и тем, что в датчиках длина

используемых оптических волокон значительно меньше, чем в системах

оптической связи.

2.4.4 Характеристики оптического волокна как структурного элемента

датчика и систем связи

Прежде чем оценивать значимость этих характеристик для обеих областей

применения, отметим общие достоинства оптических волокон:

широкополосность (предполагается до нескольких десятков терагерц);

малые потери (минимальные 0,154 дБ/км);

малый (около 125 мкм) диаметр;

малая (приблизительно 30 г/км) масса;

эластичность (минимальный радиус изгиба 2 MM);

механическая прочность (выдерживает нагрузку на разрыв примерно 7 кг);

отсутствие взаимной интерференции (перекрестных помех типа известных в

телефонии "переходных разговоров");

безындукционность (практически отсутствует влияние электромагнитной

индукции, а следовательно, и отрицательные явления, связанные с грозовыми

разрядами, близостью к линии электропередачи, импульсами тока в силовой

сети);

взрывобезопасность (гарантируется абсолютной неспособностью волокна быть

причиной искры);

высокая электроизоляционная прочность (например, волокно длиной 20 см

выдерживает напряжение до 10000 B);

высокая коррозионная стойкость, особенно к химическим растворителям,

маслам, воде.

В области оптической связи наиболее важны такие достоинства волокна,

как широкополосность и малые потери, причем в строительстве внутригородских

сетей связи наряду с этими свойствами особое значение приобретают малый

диаметр и отсутствие взаимной интерференции, а в электрически

неблагоприятной окружающей среде — безындукционность. Последние же три

свойства в большинстве случаев здесь не играют какой-либо заметной роли.

В практике использования волоконно-оптических датчиков имеют

наибольшее значение последние четыре свойства. Достаточно полезны и такие

свойства, как эластичность, малые диаметр и масса. Широкополосность же и

малые потери значительно повышают возможности оптических волокон, но далеко

не всегда эти преимущества осознаются разработчиками датчиков. Однако, с

современной точки зрения, по мере расширения функциональных возможностей

волоконно-оптических датчиков в ближайшем будущем эта ситуация понемногу

исправится.

Как будет показано ниже, в волоконно-оптических датчиках оптическое

волокно может быть применено просто в качестве линии передачи, а может

играть роль самого чувствительного элемента датчика. В последнем случае

используются чувствительность волокна к электрическому полю (эффект Керра),

магнитному полю (эффект Фарадея), к вибрации, температуре, давлению,

деформациям (например, к изгибу). Многие из этих эффектов в оптических

системах связи оцениваются как недостатки, в датчиках же их появление

считается скорее преимуществом, которое следует развивать.

Следует также отметить, что оптические волокна существенно улучшают

характеристики устройств, основанных на эффекте Саньяка.

2.5 Классификация волоконно-оптических датчиков и примеры их

применения

Современные волоконно-оптические датчики позволяют измерять почти все.

Например, давление, температуру, расстояние, положение в пространстве,

скорость вращения, скорость линейного перемещения, ускорение, колебания,

массу, звуковые волны, уровень жидкости, деформацию, коэффициент

преломления, электрическое поле, электрический ток, магнитное поле,

концентрацию газа, дозу радиационного излучения и т.д.

Если классифицировать волоконно-оптические датчики с точки зрения

применения в них оптического волокна, то, как уже было отмечено выше, их

можно грубо разделить на датчики, в которых оптическое волокно используется

в качестве линии передачи, и датчики, в которых оно используется в качестве

чувствительного элемента. Как видно из таблицы 1, в датчиках типа "линии

передачи" используются в основном многомодовые оптические волокна, а в

датчиках сенсорного типа чаще всего — одномодовые.

Таблица 2.1 - Характеристики волоконно-оптических датчиков

|Структура |Измеряемая |Используемое |Детектируемая |Оптическое |Параметры и |

| |физическая |физическое |величина |волокно |особенности |

| |величина |явление, свойство| | |измерений |

|Датчики с оптическим волокном в качестве линии передачи |

|Проходящего типа |Электрическое |Эффект Поккельса |Составляющая |Многомодовое |1... 1000B; |

| |напряжение, | |поляризация | |0,1...1000 В/см |

| |напряженность | | | | |

| |электрического | | | | |

| |поля | | | | |

|Проходящего типа |Сила |Эффект Фарадея |Угол поляризации |Многомодовое |Точность (1% при |

| |электрического | | | |20...85( С |

| |тока, | | | | |

| |напряженность | | | | |

| |магнитного поля | | | | |

|Проходящего типа |Температура |Изменение |Интенсивность |Многомодовое |-10...+300( С |

| | |поглощения |пропускаемого | |(точность (1( С) |

| | |полупроводников |света | | |

|Проходящего типа |Температура |Изменение |Интенсивность |Многомодовое |0...70( С |

| | |постоянной |пропускаемого | |(точность (0,04( |

| | |люминесценции |света | |С) |

|Проходящего типа |Температура |Прерывание |Интенсивность |Многомодовое |Режим "вкл/выкл" |

| | |оптического пути |пропускаемого | | |

| | | |света | | |

|Проходящего типа |Гидроакустическое|Полное отражение |Интенсивность |Многомодовое |Чувствительность |

| |давление | |пропускаемого | |... 10 мПа |

| | | |света | | |

|Проходящего типа |Ускорение |Фотоупругость |Интенсивность |Многомодовое |Чувствительность |

| | | |пропускаемого | |около 1 мg |

| | | |света | | |

|Проходящего типа |Концентрация газа|Поглощение |Интенсивность |Многомодовое |Дистанционное |

| | | |пропускаемого | |наблюдение на |

| | | |света | |расстоянии до 20 |

| | | | | |км |

|Отражательного |Звуковое давление|Многокомпонентная|Интенсивность |Многомодовое |Чувствительность,|

|типа |в атмосфере |интерференция |отраженного света| |характерная для |

| | | | | |конденсаторного |

| | | | | |микрофона |

|Отражательного |Концентрация |Изменение |Интенсивность |Пучковое |Доступ через |

|типа |кислорода в крови|спектральной |отраженного света| |катетер |

| | |характеристики | | | |

|Отражательного |Интенсивность |Изменение |Интенсивность |Пучковое |Неразрушающий |

|типа |СВЧ-излучения |коэффициента |отраженного света| |контроль |

| | |отражения жидкого| | | |

| | |кристалла | | | |

|Антенного типа |Параметры |Излучение |Интенсивность |Многомодовое |Длительность |

| |высоковольтных |световода |пропускаемого | |фронта до 10 нс |

| |импульсов | |света | | |

|Антенного типа |Температура |Инфракрасное |Интенсивность |Инфракрасное |250...1200( С |

| | |излучение |пропускаемого | |(точность (1%) |

| | | |света | | |

|Датчики с оптическим волокном в качестве чувствительного элемента |

|Кольцевой |Скорость вращения|Эффект Саньяка |Фаза световой |Одномодовое |>0,02 (/ч |

|интерферометр | | |волны | | |

|Кольцевой |Сила |Эффект Фарадея |Фаза световой |Одномодовое |Волокно с |

|интерферометр |электрического | |волны | |сохранением |

| |тока | | | |поляризации |

|Интерферометр |Гидроакустическое|Фотоупругость |Фаза световой |Одномодовое |1...100 рад(атм/м|

|Маха-Цендера |давление | |волны | | |

|Интерферометр |Сила |Магнитострикция |Фаза световой |Одномодовое |Чувствительность |

|Маха-Цендера |электрического | |волны | |10-9 А/м |

| |тока, | | | | |

| |напряженность | | | | |

| |магнитного поля | | | | |

| | | | | | |

|Интерферометр |Сила |Эффект Джоуля |Фаза световой |Одномодовое |Чувствительность |

|Маха-Цендера |электрического | |волны | |10 мкА |

| |тока | | | | |

|Интерферометр |Ускорение |Механическое |Фаза световой |Одномодовое |1000 рад/g |

|Маха-Цендера | |сжатие и |волны | | |

| | |растяжение | | | |

|Интерферометр |Гидроакустическое|Фотоупругость |Фаза световой |Одномодовое |— |

|Фабри-Перо |давление | |волны | | |

| | | |(полиинтерференци| | |

| | | |я) | | |

|Интерферометр |Температура |Тепловое сжатие и|Фаза световой |Одномодовое |Высокая |

|Фабри-Перо | |расширение |волны | |чувствительность |

| | | |(полиинтерференци| | |

| | | |я) | | |

|Интерферометр |Спектр излучения |Волновая |Интенсивность |Одномодовое |Высокая |

|Фабри-Перо | |фильтрация |пропускаемого | |разрешающая |

| | | |света | |способность |

|Интерферометр |Пульс, скорость |Эффект Доплера |Частота биений |Одномодовое, |10-4...108 м/с |

|Майкельсона |потока крови | | |многомодовое | |

|Интерферометр на |Гидроакустическое|Фотоупругость |Фаза световой |С сохранением |Без опорного |

|основе мод с |давление | |волны |поляризации |оптического |

|ортогональной | | | | |волокна |

|поляризацией | | | | | |

|Интерферометр на |Напряженность |Магнитострикция |Фаза световой |С сохранением |Без опорного |

|основе мод с |магнитного поля | |волны |поляризации |оптического |

|ортогональной | | | | |волокна |

|поляризацией | | | | | |

|Неинтерферометрич|Гидроакустическое|Потери на |Интенсивность |Многомодовое |Чувствительность |

|еская |давление |микроиз- гибах |пропускаемого | |100 мПа |

| | |волокна |света | | |

|Неинтерферометрич|Сила |Эффект Фарадея |Угол поляризации |Одномодовое |Необходимо |

|еская |электрического | | | |учитывать |

| |тока, | | | |ортогональные |

| |напряженность | | | |моды |

| |магнитного поля | | | | |

|Неинтерферометрич|Скорость потока |Колебания волокна|Соотношение |Одномодовое, |>0,3 м/с |

|еская | | |интенсивности |многомодовое | |

| | | |между двумя | | |

| | | |модами | | |

|Неинтерферометрич|Доза |Формирование |Интенсивность |Многомодовое |0,01...1,00 Мрад |

|еская |радиоактивного |центра |пропускаемого | | |

| |излучения |окрашивания |света | | |

|Последовательного|Распределение |Обратное |Интенсивность |Многомодовое |Разрешающая |

|и параллельного |температуры и |рассеяние Релея |обратного | |способность 1 м |

|типа |деформации | |рассеяния Релея | | |

|[pic] | |[pic] |

| | |Рис. 2.6 - Волоконно-оптический датчик антенного |

| | |типа. |

| | | |

|Рис. 2.5 - Волоконно-оптический датчик проходящего типа. | | |

| | | |

|[pic] |

|Рис. 2.7 - Волоконно-оптический датчик отражательного типа. |

2.6 Заключение по главе

|[pic] |

| |

|Рис.2.4 - Классификация основных структур волоконно-оптических |

|датчиков: |

|а) с изменением характеристик волокна (в том числе специальных |

|волокон) |

|б) с изменением параметров передаваемого света |

|в) с чувствительным элементом на торце волокна |

Основными элементами волоконно-оптического датчика, как можно заметить из

табл. 2.1, являются оптическое волокно, светоизлучающие (источник света) и

светоприемные устройства, оптический чувствительный элемент. Кроме того,

специальные линии необходимы для связи между этими элементами или для

формирования измерительной системы с датчиком. Далее, для практического

внедрения волоконно-оптических датчиков необходимы элементы системной

техники, которые в совокупности с вышеуказанными элементами и линией связи

образуют измерительную систему.

3 Оптические гироскопы

Гироскоп выполняет функции детектора угловой скорости в инерциальном

пространстве и по праву может называться абсолютным тахометром, являясь

структурным элементом инерциальной навигационной системы, обрабатывающей

информацию о местонахождении самолета или судна с целью выведения его на

курс. В состав этой системы обычно входит три гироскопа — для измерения

скорости вращения вокруг трех ортогональных осей, три акселерометра — для

определения скорости и расстояния и направлении трех осей и компьютер — для

обработки выходных сигналов этих приборов. К самолетным гироскопам

предъявляются очень высокие требования: разрешающая способность и дрейф

нуля 0,01(/ч, динамический диапазон 6 порядков, высокая стабильность (10-5)

масштабного коэффициента преобразования угла поворота в выходной сигнал. До

сих пор применялись в основном механические гироскопы, работающие на основе

эффекта удержания оси вращения тела в одном направлении инерциального

пространства (закон сохранения момента количества движения). Это

дорогостоящие приборы, поскольку требуется высокая точность формы тела

вращения и минимальное возможное трение подшипников. В отличие от

механических оптические гироскопы, например, волоконно-оптические,

созданные на основе эффекта Саньяка, имеют структуру статического типа,

обладающую рядом достоинств, основные из которых: отсутствие подвижных

деталей и, следовательно, устойчивость к ускорению; простота конструкции;

короткое время запуска; высокая чувствительность; высокая линейность

характеристик; низкая потребляемая мощность; высокая надежность.

Кроме того, возможно снижение стоимости волоконно-оптических гироскопов за

счет внедрения оптических интегральных схем. Наряду с использованием в

самолетах и на судах можно ожидать по мере прогресса в технике гироскопов

применения их в автомобилях, роботах и т. д.

1. Принцип действия оптического гироскопа

Принцип действия оптического гироскопа основан на эффекте Саньяка. По

круговому оптическому пути, как показано на рис. 1, благодаря расщепителю

луча свет распространяется в двух противоположных направлениях. Если при

этом система находится в покое относительно инерциального пространства, оба

световых луча распространяются встречно по оптическому пути одинаковой

длины. Поэтому при сложении лучей в расщепителе по завершении пути нет

фазового сдвига. Однако, когда оптическая система вращается в инерциальном

пространстве с угловой скоростью (, между световыми волнами возникает

разность фаз. Это явление и называется эффектом Саньяка.

|[pic] |[pic] |

|Рис. 3.1 - Принцип возникновения эффекта |Рис 3.2 - Эффект Саньяка при оптическом |

|Саньяка |пути произвольной формы |

Пусть коэффициент преломления на оптическом пути n=1. При радиусе

оптического пути a время достижения расщепителя лучей светом, движущимся по

часовой стрелке, выражается как

[pic]

(3.1)

в противоположном направлении —

[pic]

(3.2)

где с — скорость света.

Из формул (1) и (2) разность времени распространения двух световых

волн с учетом c>>a(

[pic]

(3.3)

Это означает, что появляется разность длины оптических путей

[pic]

(3.4)

или, иначе говоря, разность фаз

[pic]

(3.5)

Здесь S — площадь, окаймленная оптическим путем; k — волновое число.

Формула (3.5) вытекает из формулы (3.3) при допущении, что n=1 и оптический

путь имеет круговую форму, но возможно доказать, что формула (3.5) является

основной для эффекта Саньяка. Она не зависит от формы оптического пути,

положения центра вращения и коэффициента преломления.

3.2 Структурные схемы оптических гироскопов

На рис. 3.3 приведены общие схемы систем, разработанных

для повышения точности измерений. Кольцевой лазерный гироскоп (рис.

3.3, а) отличается высокой частотой световой волны — до нескольких

сотен терагерц. Волоконно-оптический гироскоп на (рис. 3.3, б) имеет

высокую чувствительность, благодаря использованию длинного одномодового

оптического волокна с низкими потерями. В оптическом гироскопе пассивного

типа с кольцевым резонатором (рис. 3.3, в) используется острая

резонансная характеристика резонатора.

|[pic] |

|Рис. 3.3 - Структурные схемы гироскопов на эффекте Саньяка |

|(r и (l - частота генерации света с правым и левым вращением; ( - время, |

|необходимое для однократного прохождения светом кольцевого оптического пути;|

|(FSR - полный спектральный диапазон |

3.3 Волоконно-оптические гироскопы

На рис. 3.3 приведена оптическая схема волоконно-оптического гироскопа. По

сути это интерферометр Саньяка (см. рис. 3.1), в котором круговой

оптический контур заменен на катушку из длинного одномодового оптического

волокна. Часть схемы, обведенная штриховой линией, необходима для повышения

стабильности нулевой точки.

|[pic] |

| |

|Рис. 3.4 - Принципиальная оптическая схема волоконно-оптического гироскопа |

Таким образом, разность фаз между двумя световыми волнами,

обусловленная эффектом Саньяка

[pic]

(3.6)

где N — число витков в катушке из волокна; L — длина волокна; а —

радиус катушки.

Следует обратить внимание на то, что в основные формулы не входит

коэффициент преломления света в волокне.

Благодаря совершенствованию технологии производства выпускается

волокно с очень низкими потерями. Чтобы не повредить волокно, намотка

производится на катушку радиусом несколько сантиметров. При этом не

наблюдается сколько-нибудь заметного увеличения потерь. Можно создать

сравнительно малогабаритный и высокочувствительный интерферометр Саньяка с

катушкой небольшого радиуса (2...5 см), намотав на нее волокно большой

длины. Сформировав оптимальную оптическую систему, можно измерять с высокой

точностью изменения фазы (в инерциальной навигации — порядка 10-6(рад), а

затем из формулы (3.6) определять круговую скорость. Все это и составляет

принцип работы волоконно-оптического гироскопа.

Поскольку данный волоконно-оптический гироскоп — пассивного типа, в

нем отсутствуют такие проблемы, как явление синхронизма.

Пределы обнаружения угловой скорости. В основной оптической системе на

(рис. 3.3) в состоянии оптические пути для света в обоих направлениях

обхода будут одинаковы по длине, а поскольку сигнал на выходе

светоприемника изменяется пропорционально [pic], то гироскоп

нечувствителен к очень малым поворотам. Считается, что в системе с

оптимальной чувствительностью теоретические пределы обнаружения угловой

скорости связаны с дробовым шумом светоприемника. Анализ показывает, что

для оптического волокна с потерями ( существует определенная длина,

позволяющая оптимизировать пределы обнаружения при дробовом шуме:

[pic]

(3.7)

|[pic] | |[pic] |

|Рис.3.5, а. Чувствительность | |Рис.3.5, б. Чувствительность |

|волоконно-оптического гироскопа при | |волоконно-оптического гироскопа при дробовом |

|дробовом шуме светоприемника при | |шуме светоприемника при разной длине световой|

|оптимальной длине волокна | |волны |

Результаты расчета при типичных значениях параметров приведены на рис.

3.5, а. Для оптического волокна с потерями 2 дБ/км пределы обнаружения

примерно 10-8 рад/с (0,001(/ч). Это как раз значения, применяемые в

инерциальной навигации. На рис. 3.5, б показано, что благодаря увеличению

радиуса катушки с оптическим волокном, а также использованию света с длиной

волны 1,55 мкм, на которой потери в оптическом волокне очень низки,

возможно создание измерителя оборотов в инерциальном пространстве с

чрезвычайно малым дрейфом. Это позволяет применять измеритель не только в

навигации, но и в геофизике.

В реальных волоконно-оптических гироскопах возможности ограничены шумовыми

факторами.

3.4 Шумовые факторы, методы их устранения

Методы повышения чувствительности еще не обеспечивают высокой

стабильности, необходимо учитывать шумовые факторы и принимать меры по их

устранению.

3.4.1 Основные оптические системы с повышенной стабильностью

Для достижения высокой стабильности необходимо, чтобы внешние

возмущения, воспринимаемые световыми лучами, движущимися в противоположных

направлениях, были совершенно одинаковыми.

В основной оптической системе, показанной на рис. 4, при использовании

светоприемника 1 свет дважды отражается расщепителем луча и, кроме того,

дважды проходит сквозь него. При этом условие одинаковой длины оптического

пути выполняется не совсем точно и вследствие температурных колебаний

характеристик расщепителя луча на выходе возникает дрейф. При использовании

светоприемника 2 происходит то же самое. Чтобы световые лучи, введенные в

оптическое волокно и излучаемые волокном, проходили одинаковый оптический

путь, объединялись и разъединялись в одной и той же точке расщепителя луча,

а также имели бы одинаковую моду, необходимо между расщепителями луча

установить пространственный фильтр. В этом фильтре желательно использовать

одномодовое оптическое волокно — то же, что и для чувствительной катушки.

Обычно в одномодовом оптическом волокне возможно распространение двух

независимых мод с ортогональной поляризацией. Но поскольку оптические

волокна обладают не совсем строгой осевой симметрией, фазовые постоянные

этих двух мод различны. Однако между модами двух поляризаций происходит

обмен энергией, характеристики которого изменяются под внешним

воздействием, поэтому излученный волокном свет обычно приобретает круговую

поляризацию с неустойчивыми параметрами. Все это приводит к дрейфу

выходного сигнала.

Если же на оптическом пути поместить, как это показано в обведенной

штриховой линией части на рис. 4, поляризационную пластину, т. е. пустить

на оптический путь интерферометра световую волну с единственной

поляризацией и в излучаемом свете выделить только составляющую с такой же

поляризацией, то передаточная функция кольцевого оптического пути

(оптического волокна) для лучей с противоположным направлением движения

будет одинакова и, тем самым, проблема решена. Но и в этом случае остаются

колебания мощности света, достигшего светоприемника, поэтому необходимо

принять еще меры по стабилизации масштабного коэффициента. Одна из таких

мер — введение деполяризатора, который компенсирует колебания поляризации в

оптическом волокне и делает состояние поляризации произвольным, или

введение оптического волокна, сохраняющего поляризацию. В гироскопах со

световым гетеродинированием эффективное решение проблемы — нулевой метод.

Для устранения дрейфа, обусловленного колебаниями поляризации в

оптическом волокне, требуется поляризатор с очень большим затуханием (около

90 дБ), но это требование смягчается при использовании оптического волокна

с сохранением поляризации и источника света с низкой когерентностью. В

оптическом волокне с сохранением поляризации из-за разности фазовых

постоянных для мод с ортогональной поляризацией возникает разность длины

оптического пути для этих мод, поэтому использование источника с низкой

когерентностью излучения делает невозможным интерференцию между модами.

Аналогичного эффекта можно добиться и при использовании деполяризатора.

Таблица 3.1 - Шумовые факторы в волоконно-оптических гироскопах

|Шумовой фактор |Рекомендуемые меры по снижению шума |

|Колебания поляризации в оптическом |Включение на выходе волокна анализатора, |

|волокне, например, преобразование линейной|для того чтобы выделить составляющую |

|поляризации в круговую в одномодовом |поляризации одного направления |

|волокне | |

|Разность длины оптических путей для |Стабилизация спектра источника света |

|световых волн, идущих в противоположных | |

|направлениях, при динамической | |

|нестабильности спектра источника света | |

|Разность частот волн, идущих по волокну в |Использование двух акустооптических |

|противоположных направлениях, при |модуляторов или модуляция прямоугольными |

|колебаниях температуры |импульсами |

|Неравномерность распределения температуры |Намотка оптического волокна, при которой |

|вдоль волокна |распределение температуры симметрично |

| |относительно середины катушки |

|Изменение фазы выходного сигнала из-за |Магнитное экранирование и использование |

|эффекта Фарадея в волокне под воздействием|волокна с сохранением поляризации |

|колебаний магнитного поля Земли | |

|Колебания (в расщепителе луча) отношения |Модуляция излучаемого света прямоугольными |

|интенсивности прямого и обратного луча |импульсами со скважностью 50%; |

|вследствие оптического эффекта Керра |использование широкополосного источника |

| |света |

|Интерференция прямого луча и луча |Фазовая модуляция световой волны; |

|обратного рассеяния Рэлея |импульсная частотная модуляция лазерного |

| |излучения; использование |

| |слабоинтеферирующего источника света |

3.5 Выводы по главе

В данной главе рассмотрен принцип действия некоторых оптических

гироскопов, в том числе волоконно-оптических. Волоконно-оптические

гироскопы находят широкое применение. Быстрыми темпами ведется разработка

различных приборов на микрооптической технологии, волоконно-оптических

функциональных элементах, оптических волноводных элементах. К настоящему

времени такие гироскопы среднего класса уже имеются в продаже.

Волоконно-оптические гироскопы отличаются от прежних отсутствием

механических систем, что делает их пригодными не только в навигации, но и в

других областях, например, для контроля движения бура при бурении нефтяных

скважин. Кроме того, если увеличить диаметр кольца из оптического волокна,

удлинить интервал интегрирования выходного сигнала, то можно повысить

чувствительность, что позволит использовать гироскоп для прогноза погоды,

измерения флюктуаций собственного вращения Земли и др.

Использованная литература

1 Полупроводниковые приборы. Транзисторы средней и большой мощности.

Справочник. Миркин А.А.-М.: Коллектив авторов, 1995. – 640с.

2 Мурадян А.Г. Усилительные устройства. –М.: Связь, 1976. -280с.

3 Брискер А.С., Гусев Ю.М., Ильин В.В. и другие. Спектральное уплотнение

волоконно-оптических линий ГТС//Электросвязь, 1990, №1, с41-42.

4 Брискер А.С., Быстров В.В., Ильин В.В.. Способы увеличения пропускной

способности волоконно-оптических линий ГТС//Электросвязь, 1991, ,№4, с28-

29.

5 М.М. Бутусов, С.М. Верник, С.Л. Балкин и другие. Волоконно-оптические

системы передачи. -М.: Радио и связь, 1992 –416с.

6 Заславский К.Е..Учебное пособие. Волоконно-оптические системы передачи.

Часть 3.-Н.:СибГАТИ, 1997 –61с.

7 Лазерная безопасность.Общие требования безопасности при разработке и

эксплуатации лазерных изделий. -М.:Издательство стандартов, 1995 –20с.

8 Глазер В. “Световодная техника” М. Энегроатомиздат 1985г.

9 Савельев И. В. “Курс общей физики” М. Наука 1978, 1982г.

10 Волноводы оптической связи, Теумин И.И.

11 Волоконно-оптические датчики, под ред. Т.Окоси, перевод с япон.

12 Оптические волноводы, Marcuse D., перевод с англ.

13 Основы волоконно-оптической связи, под ред. Е.М.Дианова, перевод

с англ

-----------------------

Преобразова-тель кода

Передающий оптический модуль

Преобразова-тель кода стыка

Скрем блер

Аппаратура временного объединения

ПК

РУ

ЛК

Ф

УС

ФД

ВТЧ

ОПр

Выход

Вход

Рис.1.15

- Структурная схема оптического приемника.

Страницы: 1, 2


© 2010 Современные рефераты