Рефераты

Жидкие кристаллы

совсем уж тривиальна. Однако не торопитесь с суждениями. Вспомните, что

жидкий кристалл течет, как обычная жидкость. А жидкость не проявляет

свойств упругости, за исключением упругости по отношению к всестороннему

сжатию, и поэтому для нее модуль упругости по отношению к обычным

деформациям строго равен нулю. Казалось бы, налицо парадокс. Но его

разрешение в том, что жидкий кристалл — это не обычная, а анизотропная

жидкость, т. е. жидкость, «.свойства которой различны в различных

направлениях.

Таким образом, построение теории упругости для жидких кристаллов было не

таким уж простым делом и нельзя было теорию, развитую для кристаллов,

непосредственно применить к жидким кристаллам. Во-первых, Существенно, что,

когда говорят о деформации в жидких кристаллах, то имеют в виду отклонения

направления директора от равновесного направления. Для нематика, например,

это означает, что речь идет об изменении от Точки к точке в образце под

влиянием внешнего воздействия ориентации директора, который в равновесной

ситуации, т. е. в отсутствии воздействия, во всем образце ориентирован

одинаково. В обычной же теории упруго сти деформации описывают смещение

отдельных точек твердого тела относительно друг друга под влиянием

приложенного воздействия. Таким образом, деформации в жидком кристалле —

это совсем не те привычные всем деформации, о которых говорят в случае

твердого тела. Кроме того, упругие свойства жидкого кристалла в общем

случае следует рассматривать, учитывая его течение, что также вносит новый

элемент и тем самым усложняет рассмотрение по сравнению с обычной теорией

упругости. Поэтому здесь ограничимся рассказом об упругости жидких

кристаллов в отсутствие течений.

Оказывается, любую деформацию в жидком кристалле можно представить как

одну из трех допустимых в ЖК видов изгибных деформаций либо как комбинацию

этих трех видов деформации. Такими главными деформациями являются

поперечный изгиб, кручение и продольный изгиб. Рис. 6, иллюстрирующий

названные виды деформаций, делает понятным происхождение их названий.

В поперечном изгибе меняется от точки к точке вдоль оси образца на рис. 6,

а направление, перпендикулярное (поперечное) директору, в продольном изгибе

— ориентация директора, а в кручении происходит поворот директора вокруг

оси изображенного на рис. 6, б образца.

Коэффициенты пропорциональности между упругой энергией жидкого кристалла

и деформациями изгибов называют упругими модулями. Таких упругих модулей в

жидких кристаллах по числу деформаций три —K1, К2 и Кз. Численные значения

этих модулей несколько отличаются друг от друга. Так, модуль продольного

изгиба Кз обычно оказывается больше двух других модулей. Наименьшую

упругость жидкий кристалл проявляет по отношению к кручению, т. е. модуль

Кг, как правило, меньше остальных.

Такой результат качественно можно понять, вспоминая обсуждавшуюся выше

модель нематика как жидкости ориентированных палочек. Действительно, чтобы

осуществить продольный изгиб, надо прикладывать усилия, которые стремятся

изогнуть эти палочки (а они жесткие)). В деформации же кручения, например,

происходит просто поворот палочек-молекул относительно друг друга, при этом

не возникает усилий, связанных с деформацией отдельной палочки-молекулы.

Поэтому и оказывается, что упругость по отношению к продольному изгибу

(модуль Кз), больше упругости по отношению к кручению (модуль К2). Модуль

же К) имеет промежуточную между К2 и Кз величину.

Чтобы сравнить упругость жидкого кристалла с упругостью обычного

кристалла, надо сравнить их упругие энергии, приходящиеся на единицу

объема. При этом можно для качественной оценки пренебречь различием модулей

поперечного, продольного изгиба и кручения и, вычисляя упругую энергию

жидкого кристалла, использовать их среднее значение. Сравнение показывает,

что упругая энергия твердого тела в типичной ситуации оказывается по

меньшей мере на десять порядков больше упругой энергии жидкого кристалла)))

Таким образом, теория упругости жидких кристаллов, описывающая их как

сплошную среду, т. е. претендующая только на описание свойств ЖК,

усредненных по расстояниям больше межмолекулярных, приводит к выводу, что

минимальная энергия жидкого кристалла соответствует отсутствию деформаций в

нем. Для нематика таким состоянием с минимальной энергией или, как говорят,

основным состоянием является конфигурация с одинаковой ориентацией

директора во всем объеме образца. Любое отклонение распределения

направлений директора от однородного (т. е. постоянного во всем объеме)

связано с наличием в нематике дополнительной упругой энергии, т. е. может

быть реализовано только за счет приложения внешних воздействий, например,

связанных с поверхностями образца, внешними электрическими и магнитными

полями и т. д. В отсутствие этих воздействий или при снятии их нематик

стремится возвратиться в состояние с однородной ориентацией директора.

Континуальная теория применима для описания и других типов жидких

кристаллов. Для них, однако, требуются определенные модификации теории. Но

об этом речь пойдет дальше.

Гидродинамика ЖК.Только что мы познакомились с упругими свойствами

жидкого кристалла, сближающими его с твердыми телами. При этом обнаружились

существенные отличия его упругих свойств от свойств кристалла как в

качественном, так и количественном отношении. Теперь познакомимся детально

со свойством жидкого кристалла, типичным для жидкости, — текучестью,

изучением которой занимается наука гидродинамика.

Сразу следует сказать, что несмотря на солидный возраст гидродинамики,

одной из древнейших научных дисциплин, и большие достижения, в этой науке

существуют проблемы, не решенные до сих пор. К их числу относится проблема

турбулентного, т. е. сопровождающегося нерегулярными вихрями, как в бурном

потоке, течения жидкости. Эта проблема, находящаяся, кстати сказать, сейчас

в центре внимания специалистов, не решена еще для самых обычных жидкостей,

таких, как вода. А о полном описании турбулентного течения таких сложных

сред, как жидкие кристаллы, пока что не идет и речи. Поэтому, говоря здесь

о текучести жидких кристаллов, мы будем иметь в виду их спокойное течение,

в котором нет нерегулярных вихрей, или, как принято называть его,

«ламинарное течение».

Ламинарное течение обычных жидкостей хорошо изучено. Основной

характеристикой, определяющей течение в этих условиях, является вязкость,

свойство жидко стей, всем хорошо известное на практике. Так, каждый, не

задумываясь, скажет, что у воды вязкость небольшая, у смазочных масел

гораздо больше, а у смолы—очень большая.

Вязкость характеризуется количественно коэффициентом вязкости т, который

показывает, как сильно трение между соседними слоями текущей жидкости и

насколько интенсивно передается движение жидкости от одной ее точки к

другой (см. рис. 7). Именно из-за вязкости при течении жидкости по трубе ее

скорость непосредственно на стенках трубы равна нулю, а в сечении трубы не

постоянна, а возрастает по мере удаления от стенок, достигая максимума в

центре.

Типичными задачами в течении жидкостей являются течение жидкости по трубе

(например, нефтепродуктов в трубопроводе) и движение тела (например, шарика

под действием силы тяжести) в жидкости. Понятно, что оба эти примера имеют

непосредственное отношение к практическим задачам. Гидродинамика давно уже

дала точное описание таких течений и, зная вязкость жидкости и давление,

создаваемое насосными станциями, можно абсолютно точно рассчитать поток

нефти в трубопроводе или скорость движения тела в жидкости. Для нас здесь

важно то, что именно в таких условиях выполняют измерение вязкости

жидкостей. В соответствующих экспериментах трубу заменяют капилляром, а

движущееся тело шариком, падающим под действием силы тяжести в жидкости.

Течение жидкости в капилляре описывается законом Пуазейля, названным так в

честь французского ученого, открывшего эту закономерность. В соответствии с

этим законом количество жидкости, протекающей через трубу (капилляр), прямо

пропорционально разности давлений на концах трубы, второй степени площади

сечения трубы и обратно пропорционально коэффициенту вязкости. Скорость

движения шарика в жидкости описывается законом Стокса, названного так по

имени английского физика девятнадцатого века, современника Пуазейля. Эта

закономерность гласит, что скорость движения шарика в жидкости прямо

пропорциональна приложенной к нему силе и обратно пропорциональна радиусу

шарика и вязкости жидкости.

Обратим здесь внимание читателя на то, что в девятнадцатом веке и ранее

было часто принято многим установленным учеными соотношениям, даже не очень

важным, давать громкое имя «закон». В результате этой традиции появились

приведенные выше термины — закон Пуазейля, закон Стокса и многие другие

законы. Это не должно смущать читателя и вводить его в заблуждение при

оценке значимости названных соотношений по сравнению со знакомыми ему со

школьной скамьи фундаментальными законами, например, законами механики

Ньютона или законами электромагнетизма Фарадея. Конечно, значимость

соотношений, найденных Пуазей-лем и Стоксом, несравнима со значимостью

фундаментальных законов Природы, а установившаяся здесь терминология—это

просто дань времени. По современной практике вместо слова «закон» следовало

бы употребить термин «формула», т. е. формула Пуазейля, формула Стокса.

Названные закономерности, как будем их называть, после сделанного

отступления прекрасно зарекомендовали себя при определении вязкости

жидкостей. В частности, экспериментально была подтверждена их

справедливость и показано, что значение коэффициента вязкости т не зависит

от скорости течения жидкости (скорости шарика), пока выполняются условия

ламинарного течения.

Приступая к изучению гидродинамики жидких кристаллов, исследователи начали

с того, что просто применили описанные методы измерения вязкости к жидким

кристаллам. Такой подход ничего хорошего не дал. Результаты измерений

вязкости не воспроизводились и зависели, казалось бы, от случайных причин,

таких, как предыстория образца, способа изготовления капилляров,

применяемых в измерениях. Более того, некоторые измерения показывали

зависимость коэффициента вязкости от скорости течения жидкого кристалла.

Эти первые результаты показали, что гидродинамика жидких кристаллов гораздо

сложней и интересней, чем гидродинамика обычных жидкостей. И конечно, надо

сказать, что исследователи, начиная изучать гидродинамику жидких

кристаллов, надеялись обнаружить новые, не известные для обычных жидкостей

свойства и были бы разочарованы, если бы течение жидких кристаллов

описывалось простыми формулами Пуазейля и Стокса.

В чем же дело? Почему течение нематика оказывается более сложным, чем

течение обычной жидкости?

Дело в том, что течение жидкости вызывает переориентацию длинных осей

молекул. А на введенном выше языке описания жидкого кристалла как сплошной

среды с помощью задания в каждой его точке направления директора означает,

что течение нематика, с одной стороны, может приводить к переориентации

директора, а с другой, к тому, что характеристики течения оказываются

различными при различной ориентации директора по отношению к направлению

скорости течения жидкости. Эти результаты легко понять и на молекулярном

уровне. При течении жидкости молекул-палочек по капиллярам, особенно узким,

течение будет выстраивать палочки-молекулы вдоль оси капилляра. Если каким-

либо' образом заставлять оставаться ориентацию палочек неизменной, то легко

сообразить, что течение жидкости • случае ориентации палочек поперек

капилляра будет затруднено по сравнению с течением при их ориентации вдоль

капилляра.

Эти интуитивные представления, которые мы черпаем из повседневного опыта,

полностью подтверждаются на эксперименте. Еще в начале 40-х годов В. Н.

Цветков исследовал зависимость скорости протекания нематика через капилляры

от ориентации директора. При ориентации директора поперек капилляра

скорость протекания жидкого кристалла через капилляр оказалась существенно

меньше, чем при ориентации директора вдоль оси капилляра. Ориентация

директора поперек оси капилляра осуществлялась с помощью прикладываемого

перпендикулярно капилляру магнитного поля (о том, почему поле ориентирует

нематик, речь еще впереди). Результат опыта, интерпретация которого

проводилась с помощью формулы Пуазейля, показал, что при включенном

магнитном поле наблюдаемая вязкость почти в 2 раза больше, чем в отсутствии

магнитного поля.

Таким образом, опыт показал, что для жидких кристаллов надо разрабатывать

свою, более сложную и общую, чем для обычных жидкостей, теорию текучести.

Такая теория разрабатывается усилиями многих исследователей. И оказалась

она гораздо более сложной, чем обычная гидродинамика. Достаточно сказать,

что в общем случае жидкий кристалл описывается восьмью коэффициентами

вязкости. И даже упрощенный вариант этой теории, пренебрегающий

сжимаемостью жидких кристаллов, содержит пять коэффициентов вязкости. Это

определяет как трудности теоретического описания течения жидких кристаллов,

так и постановку экспериментов, допускающих однозначную интерпретацию

результатов. Здесь надо добавить, что в экспериментальном отношении

дополнительные трудности связаны с тем, что в процессе течений в жидком

кристалле могут возникать дефекты в ориентации директора. Дефектами

называют точки или линии в нематике, на которых ориентация директора не

определена. Поведение течений при наличии таких дефектов особенно сложно,

и, в частности, упоминавшуюся выше зависимость вязкости нематика от

скорости течения связывают с возникновением при возрастании скорости именно

таких дефектов,

Таким образом, можно констатировать, что течение жидких кристаллов—это

весьма сложный процесс, а исследования гидродинамики ЖК находятся в начале

своего пути. Облегчает исследование гидродинамики жидких кристаллов их

двулучепреломление, оно позволяет визу-ализировать наведенные течением

жидкого кристалла, изменения ориентации директора и, наоборот, по изменению

двупреломления, т. е. оптических свойств нематика, судить о скоростях и

изменении скоростей в потоке. Электрические свойства. Забегая вперед,

скажем, что большинство применений жидких кристаллов связано с управлением

их свойствами путем приложения к ним ! электрических воздействий.

Податливость и «мягкость» жидких кристаллов по отношению к внешним

воздействиям делают их исключительно перспективными материалами для

применения в устройствах микроэлектроники, для которых характерны небольшие

электрические напряжения, малые потребляемые мощности и малые габариты.

Поэтому для обеспечения оптимального режима функционирования ЖК элемента в

каком-либо устройстве важно хорошо изучить электрические характеристики

жидких кристаллов. Начнем описание электрических свойств с электро

проводности жидких кристаллов. Электропроводность — это величина,

характеризующая количественно способность вещества проводить ток. Она

является коэффициентом пропорциональности в формуле l==oU, устанавливающей

связь между током / и приложенным напряжением U. Поскольку проводимость о —

характеристика вещества, то ее значение всегда приводится для единичного

объема вещества с единичным сечением поверхностей. Такой «объемчик» можно

представить себе в виде кубика или цилиндра. Напряжение прикладывается к

противоположным граням куба или сечениям цилиндра, а ток в приведенной

формуле—это суммарный ток через грани куба, к которым приложено напряжение,

или через сечение цилиндра. Вспомнив курс школьной физики, читатель скажет,

что проводимость — это величина, обратная удельному сопротивлению (строго

говоря, введенную нами величину следует также называть удельной

проводимостью, но слово «удельная» обычно опускают). Совершенно правильно]

Более того, проводимость измеряется в тех же, что и сопротивление, единицах

— в омах, точнее, обратных омах. Для объема ЖК в один кубический сантиметр

ее типичное значение ^0~"—\0~" Ом-*-см. Это довольно-таки малая величина,

характерная для органических жидкостей. Для металлов соответствующая

величина на 16—18 порядков больше) Но здесь важно не абсолютное значение

проводимости, а то, что проводимость в направлении вдоль директора (Гц

отличается от проводимости поперек директора Од. . В большинстве нематиков

сгц больше, чем Oi. Так, для нематика МББА

вЦ/»1==1,5-

Другим важным обстоятельством является то, что проводимость в жидких

кристаллах носит ионный характер. Это означает, что ответственными за

перенос электрического тока в ЖК являются не электроны, как в металлах, а

гораздо более массивные частицы. Это положительно и отрицательно заряженные

фрагменты молекул (или сами молекулы), отдавшие или захватившие избыточный

электрон. По этой причине электропроводность жидких кристаллов сильно

зависит от количества и химической природы содержащихся в них примесей. В

частности, электропроводность нематика можно целенаправленно изменять,

добавляя в него контролируемо» количество ионных добавок, в качестве

которых могут выступать некоторые соли.

Из сказанного понятно, что ток в жидком кристалле представляет собой

направленное движение ионов в системе ориентированных палочек-молекул. Если

ионы представить себе в виде шариков, то свойство нематика обладать

проводимостью вдоль директора в р. больше, чему, представляется совершенно

естественным и понятным. Действительно, при движении шариков вдоль

директора они испытывают меньше помех от молекул-палочек, чем при движении

поперек молекул-палочек. В результате чего и следует ожидать, что

продольная проводимость о II будет превосходить поперечную проводимость.

Более того, обсуждаемая модель шариков-ионов в системе ориентированных

палочек-молекул с необходимостью приводит к следующему важному заключению.

Двигаясь под действием электрического тока поперек направления директора

(мы считаем, что поле приложено поперек директора), ионы, сталкиваясь с

молекулами-палочками, будут стремиться развернуть их вдоль направления

движения ионов, т. е. вдоль направления электрического тока. Мы приходим к

заключению, что электрический ток в жидком кристалле должен приводить к

переориентации директора.

Эксперимент подтверждает выводы рассмотренной выше простой механической

модели прохождения тока в жидком кристалле. Однако во многих случаях

ситуация оказывается не такой простой, как может показаться на первый

взгляд.

Часто постоянное напряжение, приложенное к слою нематика, вызывает в

результате возникшего тока не однородное изменение ориентации молекул, а

периодическое в пространстве возмущение ориентации директора. Дело здесь в

том, что, говоря об ориентирующем молекулы нематика воздействии ионов

носителей тока, мы пока что пренебрегали тем, что ионы будут вовлекать в

свое движение также и молекулы нематика. В результате такого вовлечения

прохождение тока в жидком кристалле может сопровождаться гидродинамическими

потоками, вследствие чего может установиться периодическое в пространстве

распределение скоростей течения жидкого кристалла. Вследствие же

обсуждавшейся в предыдущем разделе связи потоков жидкого кристалла с

ориентацией директора в слое нематика возникнет периодическое возмущение

распределения директора. Подробней на этом интересном и важном в приложении

жидких кристаллов явлении мы остановимся ниже, рассказывая об электрооптике

нематиков.

Флексоэлектрический эффект. Говоря о форме молекул жидкого кристалла, мы

пока аппроксимировали ее жесткой палочкой. А всегда ли такая аппроксимация

хороша? Рассматривая модели структур молекул, можно прийти к заключению,

что не для всех соединений приближение молекула-палочка наиболее адекватно

их форме. Далее мы увидим, что с формой молекул связан ряд интересных,

наблюдаемых на опыте, свойств жидких кристаллов. Сейчас мы остановимся на

одном из таких свойств жидких кристаллов, связанном с отклонением ее формы

от простейшей молекулы-палочки, проявляющемся в существовании

флексоэлектрического эффекта.

Интересно, что открытие флексоэлектрического эффекта, как иногда говорят

о теоретических предсказаниях, было сделано на кончике пера американским

физиком Р. Мейером в 1969 году.

Рассматривая модели жидких кристаллов, образованных не молекулами-

палочками, а молекулами более сложной формы, он задал себе вопрос: «Как

форма молекулы может обнаружить себя в макроскопических свойствах?» Для

конкретности Р. Мейер предположил, что молекулы имеют грушеобразную или

банановидную форму. Далее он предположил, что отклонение формы молекулы от

простейшей, рассматривавшейся ранее, сопровождается возникновением у нее

электрического дипольного момента.

Возникновение дипольного момента у молекулы несимметричной формы — типичное

явление и связано оно с тем, что расположение «центра тяжести»

отрицательного электрического заряда электронов в молекуле может быть

несколько смещено относительно «центра тяжести» положительных зарядов

атомных ядер молекулы. Это относительное смещение отрицательных и

положительных зарядов относительно друг друга и приводит к возникновению

электрического дипольного момента молекулы. При этом в целом молекула

остается нейтральной, так как величина отрицательного заряда электронов в

точности равна положительному заряду ядер. Величина дипольного момента

равна произведению заряда одного из знаков на величину их относительного

смещения. Направлен дипольный момент вдоль направления смещения от

отрицательного заряда к положительному. Для грушеобразной молекулы

направление дипольного момента по симметричным соображениям должно

совпадать с осью вращения, для банановидной молекулы — направлено поперек

длинной оси.

Рассматривая жидкий кристалл таких молекул, легко понять, что без влияния

на него внешних воздействий дипольный момент макроскопически малого, но,

разумеется, содержащего большое число молекул объема жидкого кристалла,

равен нулю. Это связано с тем, что направление директора в жидком кристалле

задается ориентацией длинных осей молекул, количество же молекул, дипольный

момент которых направлен по директору в ту и другую сторону — для

грушеобразных молекул, или для банановидных молекул — поперек направления

директора в ту и другую сторону, одинаково. В результате дипольный момент

любого макроскопического объема жидкого кристалла равен нулю, так как он

равен сумме дипольных моментов отдельных молекул.

Так, однако, дело обстоит лишь в неискаженном образце. Стоит путем внешнего

воздействия, например механического, исказить, скажем, изогнуть его, как

молекулы начнут выстраиваться, и распределение направлений дипольных

моментов отдельных молекул вдоль директора для грушеподобных молекул и

поперек директора для банановидных будет неравновероятным. Это означает,

что возникает преимущественное направление ориентации дипольных моментов

отдельных молекул и, как следствие, появляется макроскопический дипольный

момент в объеме жидкого кристалла. Причиной такого выстраивания являются

стерические факторы, т. е. факторы, обеспечивающие плотнейшую упаковку

молекул. Плотнейшей упаковке молекул именно и соответствует такое

выстраивание молекул, при котором их диполь-ные моменты «смотрят»

преимущественно в одну сторону.

С макроскопической точки зрения рассмотренный эффект проявляется в

возникновении в слое жидкого кристалла электрического поля при деформации.

Как видно из рисунка, это связано с тем, что при выстраивании диполей на

одной поверхности деформированного кристалла оказывается избыток зарядов

одного, а на противоположной поверхности — другого знака. Таким обрезом,

наличие или отсутствие флексоэлектрического эффекта несет информацию о

форме молекул и ее ди-польном моменте. Для молекул-палочек такой эффект

отсутствует. Для только что рассмотренных форм молекул эффект есть. Однако,

как уже, наверное, заметили наиболее внимательные читатели, для

грушеподобных и банановидных молекул для наблюдения возникновения

электрического поля в слое надо вызвать в нем различные деформации.

Грушеподобные молекулы дают эффект при поперечном изгибе, а банановидные —

при продольном изгибе жидкого кристалла

Предсказанный теоретически флексоэлектрический эффект вскоре был обнаружен

экспериментально. Причем на эксперименте можно было пользоваться как

прямым, так и обратным эффектом. Это означает, что можно не только путем

деформации ЖК индуцировать в нем электрическое поле и макроскопический

дипольный момент (прямой эффект), но и, прикладывая к образцу внешнее

электрическое поле, вызывать деформацию ориентации директора в жидком

кристалле.

Электронная игра, электронный словарь и телевизор на жк»

Известно, какой популярностью у молодежи пользуются различные электронные

игры, обычно устанавливаемые в специальной комнате аттракционов в местах

общественного отдыха или фойе кинотеатров. Успехи в разработке матричных

жидкокристаллических дисплеев сделали возможным создание и массовое

производство подобных игр в миниатюрном, так сказать, карманном исполнении.

На рис. 28 изображена игра «Ну, погоди!», освоенная отечественной

промышленностью. Габариты этой игры, как у записной книжки, а основным ее

элементом является жидкокристаллический матричный дисплей, на котором

высвечиваются изображения волка, зайца, кур и катящихся по желобам яичек.

Задача играющего, нажимая кнопки управления, заставить волка, перемещаясь

от желоба к желобу, ловить скатывающиеся с желобов яички в корзину, чтобы

не дать им упасть на землю и разбиться. Здесь же отметим, что, помимо

развлекательного назначения, эта игрушка выполняет роль часов и будильника,

т. е. в другом режиме работы на дисплее «высвечивается» время и может

подаваться звуковой сигнал в требуемый момент времени.

Еще один впечатляющий пример эффективности союза матричных дисплеев на

жидких кристаллах и микроэлектронной техники дают современные электронные

словари, которые начали выпускать в Японии. Они представляют собой

миниатюрные вычислительные машинки размером с обычный карманный

микрокалькулятор, в память которых введены слова на двух (или больше)

языках и которые снабжены матричным дисплеем и клавиатурой с алфавитом.

Набирая на клавиатуре слово на одном языке, вы моментально получаете на

дисплее его перевод на другой язык. Представьте себе, как улучшится и

облегчится процесс обучения иностранным языкам в школе и в вузе, если

каждый учащийся будет снабжен подобным словарем) А наблюдая, как быстро

изделия микроэлектроники внедряются в нашу жизнь, можно с уверенностью

сказать, что такое время не за горами) Легко представить и пути дальнейшего

совершенствования таких словарей-переводчиков: переводится не одно слово, а

целое предложение. Кроме того, перевод может быть и озвучен. Словом,

внедрение таких словарей-переводчиков сулит революцию в изучении языков и

технике перевода.

Требования к матричному дисплею, используемому в качестве экрана

телевизора, оказываются значительно выше как по быстродействию, так и по

числу элементов, чем в описанных выше электронной игрушке и словаре-

переводчике. Это станет понятным, если вспомнить, что в соответствии с

телевизионным стандартом изображение на экране формируется из 625 строк (и

приблизительно из такого же числа элементов состоит каждая строка), а время

записи одного кадра 40 мс. Поэтому практическая реализация телевизора с

жидкокристаллическим экраном оказывается более трудной задачей. Тем не

менее налицо первые успехи в техническом решении и этой задачи. Так,

японская фирма «Сони» наладила производство миниатюрного, умещающегося

практически на ладони телевизора с черно-белым изображением и размером

экрана 3,6 см. Несомненно, в будущем удастся создать телевизоры на ЖК как с

более крупными экранами, так и с цветным изображением.

Союз микроэлектроники и жидких кристаллов оказывается чрезвычайно

эффективным не только в готовом изделии, но и на стадии изготовления

интегральных схем. Как известно, одним из этапов производства микросхем

является фотолитография, которая состоит в нанесении на поверхность

полупроводникового материала специальных масок, а затем в вытравливании с

помощью фо тографической техники так называемых литографических окон. Эти

окна в результате дальнейшего процесса производства преобразуются в

элементы и соединения микроэлектронной схемы. От того, насколько малы

размеры соответствующих окон, зависит число элементов схемы, которые могут

быть размещены на единице площади полупроводника, а от точности и качества

вытравливания окон зависит качество микросхемы. Выше уже говорилось о

контроле качества готовых микросхем с помощью холестерических жидких

кристаллов, которые визуализируют поле температур на работающей схеме и

позволяют выделить участки схемы с аномальным тепло-выделением. Не менее

полезным оказалось применение жидких кристаллов (теперь уж нематических) на

стадии контроля качества литографических работ. Для этого на

полупроводниковую пластину с протравленными литографическими окнами

наносится ориентированный слой не- матика, а затем к ней прикладывается

электрическое напряжение. В результате в поляризованном свете картина "

вытравленных окон отчетливо визуализируется. Более того, этот метод

позволяет выявить очень малые по раз- мерам неточности и дефекты

литографических работ, 1 протяженность которых всего 0,01 мкм (рис. 29).

О БУДУЩИХ ПРИМЕНЕНИЯХ ЖИДКИХ КРИСТАЛЛОВ

Жидкие кристаллы сегодня и завтра. Многие оптические эффекты в жидких

кристаллах, о которых рассказывалось выше, уже освоены техникой и

используются в изделиях массового производства. Например, всем известны

часы с индикатором на жидких кристаллах, но не все еще знают, что те же

жидкие кристаллы используются для производства наручных часов, в которые

встроен калькулятор. Тут уже даже грудно сказать, как назвать такое

устройство, то ли часы, то ли компьютер. Но это уже освоенные

промышленностью изделия, хотя всего десятилетия назад подобное казалось

нереальным. Перспективы же будущих массовых и эффективных применений жидких

кристаллов еще более удивительны. Поэтому стоит рассказать о нескольких

технических идеях применения жидких кристаллов, которые пока что не

реализованы, но, возможно, в ближайшие несколько лет послужат основой

создания устройств, которые станут для нас такими же привычными, какими,

скажем, сейчас являются транзисторные приемники.

Управляемые оптические транспаранты. Рассмотрим пример достижения научных

исследований в процессе создания жидкокристаллических экранов, отображения

информации, в частности жидкокристаллических экранов телевизоров. Известно,

что массовое создание больших плоских экранов на жидких кристаллах

сталкивается с трудностями не принципиального, а чисто технологического

характера. Хотя принципиально возможность создания таких экранов

продемонстрирована, однако а связи со сложностью их производства при

современной технологии их стоимость оказывается очень высокой. Поэтому

возникла идея создания проекционных устройств на жидких кристаллах, в

которых изображение, полученное на жидкокристаллическом экране малого

размера могло бы быть спроектировано в увеличенном виде на обычный экран,

подобно тому, как это происходит в кинотеатре с кадрами кинопленки.

Оказалось, что такие устройства могут быть реализованы на жидких

кристаллах, если использовать сэндвичевые структуры, в которые наряду со

слоем жидкого кристалла входит слой фотополупроводника. Причем запись

изображения в жидком кристалле, осуществляемая с помощью

фотополупроводника, производится лучом света. О подобном проекторе уже

рассказывалось в главе VII. Теперь же познакомимся с физическими явлениями,

положенными в основу его работы.

Принцип записи изображения очень прост. В отсутствие подсветки

фотополупроводника его проводимость очень мала, поэтому практически вся

разность потенциалов, поданная на электроды оптической ячейки, в которую

еще дополнительно введен слой фотополупроводника, падает на этом слое

фотополупроводника. При этом состояние жидкокристаллического слоя

соответствует отсутствию напряжен; .я на нем. При подсветке

фотополупроводника его проводимость резко возрастает, так как свет создает

в нем дополнительные носители тока (свободные электроны и дырки). В

результате происходит перераспределение электрических напряжений в ячейке —

теперь практически все напряжение падает на жидкокристаллическом слое, и

состояние слоя, в частности, его оптические характеристики изменяются

соответственно величине поданного напряжения. Таким образом изменяются

оптические характеристики жидкокристаллического слоя в результате действия

света. Ясно, что при этом в принципе может быть использован любой

электрооптический эффект из описанных выше. Практически, конечно, выбор

электрооптического эффекта в таком сэндвичевом устройстве, называемом

электроопти-ческим транспарантом, определяется наряду с требуе мыми

оптическими характеристиками и чисто технологическими причинами [6].

Важно, что в описываемом транспаранте изменение оптических характеристик

жидкокристаллического слоя происходит локально — в точке засветки

фотополупроводника. Поэтому такие транспаранты обладают очень высокой

разрешающей способностью. Так, объем информации, содержащейся на

телевизионном экране, может быть записан на транспаранте размерами менее

1Х1 см^.

Описанный способ записи изображения, помимо всего прочего, обладает

большими достоинствами, так как он делает ненужной сложную систему

коммутации, т. е. систему подвода электрических сигналов, которая

применяется в матричных экранах на жидких кристаллах.

Пространственно-временные модуляторы света. Управляемые оптические

транспаранты могут быть использованы не только как элементы проекционного

устройства, но и выполнять значительное число функций, связанных с

преобразованием, хранением и обработкой оптических сигналов. В связи с

тенденциями развития методов передачи и обработки информации с

использованием оптических каналов связи, позволяющих увеличить

быстродействие устройств и объем передаваемой информации, управляемые

оптические транспаранты на жидких кристаллах представляют значительный

интерес и с этой точки зрения. В этом случае их еще принято называть

пространственно-временными модуляторами света (ПВМС), или световыми

клапанами. Перспективы и масштабы применения ПВМС в устройствах обработки

оптической информации определяются тем, насколько сегодняшние

характеристики оптических транспарантов могут быть улучшены в сторону

достижения максимальной чувствительности к управляющему излучению,

повышения быстродействия и пространственного разрешения световых сигналов,

а также диапазона длин волн излучения, в котором надежно работают эти

устройства. Как уже отмечалось, одна из основных проблем — это проблема

быстродействия жидкокристаллических элементов, однако уже достигнутые

характеристики модуляторов света позволяют совершенно определенно

утверждать, что они займут значительное место в системах обработки

оптической информации. Ниже рассказывается о ряде возможных применений

модуляторов света.

Прежде всего отметим высокую чувствительность модуляторов света к

управляющему световому потоку, которая характеризуется интенсивностью

светового потока всего 10 ^—10 ^ Вт/см^. Кроме того, достигнуто высокое

пространственное разрешение сигнала — около 300 линий на 1 мм. Спектральный

диапазон работы модуляторов, выполненных на различных полупроводниковых

материалах, перекрывает длины волн от ультрафиолетового до ближнего

инфракрасного излучения. Очень важно, что в связи с применением в

модуляторах фотополупроводников удается улучшить временные характеристики

устройств по сравнению с быстродействием собственно жидких кристаллов. Так,

модуляторы света за счет свойств фотополупроводника могут зарегистрировать

оптический сигнал продолжительностью всего 10 ^— 10"^ с. Разумеется,

изменение оптических характеристик жидкого кристалла в точке регистрации

сигнала происходит с запаздыванием, т. е. более медленно, в соответствии с

временем изменения оптических характеристик жидкого кристалла при наложении

на него (или снятии) электрического поля.

Какие же, кроме уже обсуждавшихся функций, могут выполнять модуляторы

света? При соответствующем подборе режима работы модулятора они могут

выделять контур проектируемого на него изображения. Если контур

перемещается, то можно визуализировать его движение. При этом существенно,

что длина волны записывающего изображения излучения и считывающего

излучения могут отличаться. Поэтому модуляторы света позволяют, например,

визуализировать инфракрасное излучение, или с помощью видимого света

модулировать пучки инфракрасного излучения, или создавать изображения в

инфракрасном диапазоне длин волн.

В другом режиме работы модуляторы света могут выделять области,

подвергнутые нестационарному освещению. В этом режиме работы из всего

изображения выделяются, например, только перемещающиеся по изображению

световые точки, или мерцающие его участки. Модуляторы света могут

использоваться как усилители яркости света (в 10^—10° раз и более) В связи

же с их высокой пространственной разрешающей способностью их использование

оказывается эквивалентным усилителю с очень большим (10"—10^) числом

каналов. Перечисленные функциональные возможности опти ческих модуляторов

дают Основание использовать их 6 многочисленных задачах обработки

оптической информации, таких как распознавание образов, подавление помех,

спектральный и корреляционный анализ, интерферометрия, в том числе запись

голограмм в реальном масштабе времени, и т. д. Насколько широко

перечисленные возможности жидкокристаллических оптических модуляторов

реализуются в надежные технические устройства, покажет ближайшее будущее.

Оптический микрофон. Только что было рассказано об управлении световыми

потоками с помощью света. Однако в системах оптической обработки информации

и связи возникает необходимость преобразовывать не только световые сигналы

в световые, но и другие самые разнообразные воздействия в световые сигналы.

Такими воздействиями могут быть давление, звук, температура, деформация и

т. д. И вот для преобразования этих воздействий в оптический сигнал

жидкокристаллические устройства оказываются опять-таки очень удобными и

перспективными элементами оптических систем.

Конечно, существует масса методов преобразовывать перечисленные

воздействия в оптические сигналы, однако подавляющее большинство этих

методов связано сначала с преобразованием воздействия в электрический

сигнал, с помощью которого затем можно управлять световым потоком. Таким

образом, методы эти двуступенчатые и, следовательно, не такие уж простые и

экономичные в реализации. Преимущество применения в этих целях жидких

кристаллов состоит в том, что с их помощью самые разнообразные воздействия

можно непосредственно переводить в оптический сигнал, что устраняет

промежуточное звено в цепи воздействие—световой сигнал, а значит, вносит

принципиальное упрощение в управление световым потоком. Другое достоинство

ЖК-элементов в том, что они легко совместимы с узлами волоконно-оптических

устройств.

Чтобы проиллюстрировать возможности с помощью ЖК управлять световыми

сигналами, расскажем о принципе работы «оптического микрофона» на

ЖК—устройства, предложенного для непосредственного перевода акустического

сигнала в оптический.

Принципиальная схема устройства оптического микрофона очень проста. Его

активный элемент представляет собой ориентированный слой нематика. Звуковые

коле бания создают периодические во времени деформации слоя, вызывающие

также переориентации молекул и модуляцию поляризации (интенсивности)

проходящего поляризованного светового потока.

Исследования характеристик оптического микрофона на ЖК, выполненные в

Акустическом институте АН СССР, показали, что по своим параметрам он не

уступает существующим образцам и может быть использован в оптических линиях

связи, позволяя осуществлять непосредственное преобразование звуковых

сигналов в оптические. Оказалось также, что почти во всем температурном

интервале существования нематической фазы его акусто-оптические

характеристики практически не изменяются

[9]-Прежде чем перейти к другому примеру возможного

применения ЖК в оптических линиях связи, напомним, что оптическое волокно

представляет собой оптический волновод. Свет из этого волновода не выходит

наружу по той причине, что снаружи на волокно нанесено покрытие,

диэлектрическая проницаемость которого больше, чем во внутренней части

волокна, в результате чего происходит полное внутреннее отражение света на

границе внутренней части и внешнего покрытия. Волноводный режим

распространения света в волокне может быть также достигнут не только за

счет резкой диэлектрической границы, но и при плавном изменении показателя

преломления (диэлектрической проницаемости) от середины к поверхности

волновода (рис. 45).

По аналогии с оптическими волокнами в тонком слое жидкого кристалла также

может быть реализован волноводный режим распространения света вдоль слоя,

если обеспечить соответствующее изменение диэлектрической проницаемости в

пределах толщины слоя. А как мы знаем, изменения диэлектрических

характеристик в ЖК можно добиться изменением ориентации директора (длинных

осей молекул). Оказывается, в слое нематика или холестерина можно,

например, путем приложения электрического поля обеспечить такой характер

изменения ориентации директора по толщине, что для определенной поляризации

света такой слой оказывается оптическим волноводом.

Каждый увидит здесь очевидную аналогию между оптическим волокном-

волноводом и жидкокристаллическим волноводом. Но имеется здесь и очень

существенная разница. Эта разница состоит в том, что если диэлектрические

характеристики оптического волокна, а следовательно, и его волноводные

свойства, неизменны и формируются при его изготовлении, то диэлектрические,

а следовательно, и волноводные свойства ЖК-волновода легко изменять путем

внешних воздействий.

Это значит, например, что если жидкокристаллический волновод включен в

канал волоконной связи, то световой поток, идущий по этому каналу, можно

модулировать, меняя характеристики ЖК-элемента. В простейшем случае это

может быть просто прерывание светового потока, которое может происходить в

ЖК-эле-менте при таком переключении электрического сигнала на нем, которое

приводит к исчезновению его волновод-ных свойств. Кстати сказать, этот же

ЖК-элемент может выполнять и функции оптического микрофона, если он устроен

так, что акустический сигнал вызывает в нем возмущение ориентации

директора.

Как сделать стереотелевизор. В качестве еще одного заманчивого,

неожиданного и касающегося практически всех применений жидких кристаллов

стоит назвать идею создания системы стереотелевидения с применением жидких

кристаллов. Причем, что представляется особенно заманчивым, такая система

«стереотелевидения на жидких кристаллах» может быть реализована ценой очень

простой модификации передающей телекамеры и дополнением обычных

телевизионных приемников специальными очками, стекла которых снабжены

жидкокристаллическими фильтрами.

Идея этой системы стереотелевидения чрезвычайно проста. Если учесть, что

кадр изображения на телеэкране формируется построчно, причем так, что

сначала высвечиваются нечетные строчки, а потом четные, то с помощью очков

с жидкокристаллическими фильтрами легко сделать так, чтобы правый глаз,

например, видел только четные строчки, а левый — нечетные. Для этого

достаточно синхронизировать включение и выключение жидкокристаллических

фильтров, т. е. возможность воспринимать изображение на экране попеременно

то одним, то другим глазом, делая попеременно прозрачным то одно, то другое

стекло очков с высвечиванием четных и нечетных строк.

Теперь совершенно ясно, какое усложнение передающей телекамеры даст

стереоэффект телезрителю. Надо, чтобы передающая телекамера была стерео, т.

е. чтобы она обладала двумя объективами, соответствующими восприятию

объекта левым и правым глазом человека, четные строчки на экране

формировались с помощью правого, а нечетные—с помощью левого объектива

передающей камеры.

Система очков с жидкокристаллическими фильтрами—затворами,

синхронизированными с работой телевизора, может оказаться непрактичной для

массового применения. Возможно, что более конкурентоспособной окажется

стереосистема, в которой стекла очков снабжены обычными поляроидами. При

этом каждое из стекол очков пропускает линейно-поляризованный свет,

плоскость поляризации которого перпендикулярна плоскости поляризации света,

пропускаемого вторым стеклом. Стерео же эффект в этом случае достигается с

помощью жидкокристаллической пленки, нанесенной на экран телевизора и

пропускающей от четных строк свет одной линейной поляризации, а от

нечетных—другой линейной поляризации, перпендикулярной первой.

Какая из описанных систем стереотелевидения будет реализована или

выживет совсем другая система, покажет будущее.

Очки для космонавтов. Знакомясь ранее с маской для электросварщика, а

теперь с очками для стереотелеви дения, бы заметили, что в этих устройствах

управляемый жидкокристаллический фильтр перекрывает сразу все поле зрения

одного или обоих глаз. Между тем существуют ситуации, когда нельзя

перекрывать все поле зрения человека и в то же время необходимо перекрыть

отдельные участки поля зрения.

Например, такая необходимость может возникнуть у космонавтов в условиях

их работы в космосе при чрезвычайно ярком солнечном освещении, не

ослабленном ни атмосферой, ни облачностью. Эту задачу как в случае маски

для электросварщика или очков для стереотелевидения позволяют решить

управляемые жидкокристаллические фильтры.

Усложнение очков в этом случае состоит в том, что поле зрения каждого

глаза теперь должен перекрывать не один фильтр, а несколько независимо

управляемых фильтров. Например, фильтры могут быть выполнены в виде

концентрических колец с центром в центре стекол очков или в виде полосок на

стекле очков, каждая из которых при включении перекрывает только часть поля

зрения глаза.

Такие очки могут быть полезны не только космонавтам, но и людям других

профессий, работа которых может быть связана не только с ярким нерассеянным

освещением, но и с необходимостью воспринимать большой объем зрительной

информации.

Например, в кабине пилота современного самолета огромное количество

панелей приборов. Однако не все из них нужны пилоту одновременно. Поэтому

использование пилотом очков, ограничивающих поле зрения, может быть

полезным и облегчающим его работу, так как помогает сосредоточивать его

внимание только на части нужных в данный момент приборов и устраняет

отвлекающее влияние не нужной в этот момент информации. Конечно, в случае

пилота можно пойти и по другому пути—поставить ЖК-фильтры на индикаторы

приборов, чтобы иметь возможность экранировать их показания.

Подобные очки будут очень полезны также в биомедицинских исследованиях

работы оператора, связанной с восприятием большого количества зрительной

информации. В результате таких исследований можно выявить скорость реакции

оператора на зрительные сигналы, определить наиболее трудные и утомительные

этапы в его работе и в конечном итоге найти способ оптимальной ор ганизации

его работы. Последнее значит определить наилучший способ расположения

панелей приборов, тип индикаторов приборов, цвет и характер сигналов

различной степени важности и т. д.

Фильтры подобного типа и индикаторы на жидких кристаллах, несомненно,

найдут (и уже находят) широкое применение в кино-, фотоаппаратуре. В этих

целях они привлекательны тем, что для управления ими требуется ничтожное

количество энергии, а в ряде случаев позволяют исключить из аппаратуры

детали, совершающие механические движения. А как известно, механические

системы часто оказываются наиболее громоздкими и ненадежными.

Какие механические детали кино-, фотоаппаратуры имеются в виду? Это

прежде всего диафрагмы, фильтры — ослабители светового потока, наконец,

прерыватели светового потока в киносъемочной камере, синхронизованные с

перемещением фотопленки и обеспечивающие покадровое ее экспонирование.

Принципы устройства таких ЖК-элементов ясны из предыдущего. В качестве

прерывателей и фильтров-ослабителей естественно использовать ЖК-ячейки, в

которых под действием электрического сигнала изменяется пропускание света

по всей их площади. Для диафрагм без механических частей—системы ячеек в

виде концентрических колец, которых могут под действием электрического

сигнала изменять площадь пропускающего свет прозрачного окна. Следует также

отметить, что слоистые структуры, содержащие жидкий кристалл и

фотополупроводник, т. е. элементы типа управляемых оптических

транспарантов, могут быть использованы не только в качестве индикаторов,

например, экспозиции, но и для автоматической установки диафрагмы в кино-,

фотоаппаратуре.

При всей принципиальной простоте обсуждаемых устройств их широкое

внедрение в массовую продукцию зависит от ряда технологических вопросов,

связанных с обеспечением длительного срока работы ЖК-элемен-тов, их работы

в широком температурном интервале, наконец, конкуренции с традиционными и

устоявшимися техническими решениями и т. д. Однако решение всех этих

проблем — это только вопрос времени, и скоро, наверное, трудно будет себе

представить совершенный фотоаппарат, не содержащий ЖК-устройства.

Страницы: 1, 2


© 2010 Современные рефераты