Химико-токсикологический анализ производных фенотиазина - (реферат)
Химико-токсикологический анализ производных фенотиазина - (реферат)
Дата добавления: март 2006г.
Министерство Здравоохранения РФ Дальневосточный Государственный Медицинский Университет Кафедра органической и токсикологической химии Прочко Д. В. ХИМИКО-ТОКСИКОЛОГИЧЕСКИЙ АНАЛИЗ ПРОИЗВОДНЫХ ФЕНОТИАЗИНА Хабаровск, 1998 Оглавление Введение 2 Токсикологическое значение и метаболизм 2
Изолирование производных фенотиазина из биологического материала 3 Качественное обнаружение производных фенотиазина в экстракте 4 Количественное определение производных фенотиазина и их метаболитов 5
Введение
В России и за рубежом, начиная с 1945 г. , после обнаружения фармакологической активности N-замещенных производных фенотиазина, было синтезировано большое число препаратов, обладающих нейролептическим, противогистаминным, холинолитическим, седативным, антиаритмическим и коронарорасширяющим действием.
В основе химической структуры данной группы препаратов лежит гетероциклическая система, состоящая из шестичленного гетероцикла тиазина, конденсированного с двумя ядрами бензола (рис. 1).
Препараты, производные фенотиазина, представляют собой сходные по химической структуре соединения, отличающиеся только заместителями в положении 2 и 10 фенотиазинового кольца, причем между структурой заместителей и фармакологическим действием проявляется четкая зависимость: если в 10 положении находится липофильная группировка, содержащая третичный азот во 2’ или 3’положении, то препарат оказывает нейролептическое, седативное и противоаллергическое действие. Если же эта группировка гидрофильная (карбоксильная группа), то препарат оказывает коронарорасширяющее и антиаритмическое действие.
Токсикологическое значение и метаболизм
Препараты фенотиазинового ряда, так же как и другие психотропные, антигистаминные и сердечно-сосудистые средства, кроме собственно терапевтического эффекта, проявляют побочное и токсическое действие. Введение их в организм в дозах, превышающих терапевтические (медицинские ошибки, бытовые и суицидальные отравления), нередко приводит к летальным исходам. Описано большое количество отравлений этими соединениями, нередко в сочетании с другими лекарственными препаратами (барбитуратами, производными изоникотиновой кислоты, имизином, антибиотиками, инсулином и др. ).
Производные фенотиазина обладают кумулятивными свойствами и длительно выводятся из организма. Например, терапевтическая доза аминазина (50 мг) выводится из организма в течение 14-20 дней. Смертельные случаи могут наблюдаться при приемах обычных терапевтических доз.
Клиника течения отравлений производными фенотиазина во многом зависит от возраста, пола, дозы принятого лекарства и не является характерной и специфичной. Нехарактерна также и патологоанатомическая картина. Химическое исследование крови и мочи больных, а также внутренних органов и биологических жидкостей погибших могут оказать существенную помощь в диагностике отравления. Биотрансформация производных фенотиазина идет по основным типам метаболизма; сульфоокисление, деметилирование, образование N-оксида, гидроксилирование и т. д. Главным метаболитом, общим для всех производных фенотиазина, является сульфоксид (рис. 2).
Объектами исследования на производные фенотиазинового ряда являются желудок и кишечник с содержимым, печень, легкие, почки, кровь и моча.
В трупном материале производные фенотиазина и их метаболиты сохраняются (при температуре от–20 до +130С) до 3 месяцев. Консервирование материала этиловым спиртом увеличивает сохраняемость производных фенотиазина в трупном материале.
Изолирование производных фенотиазина из биологического материала По физико-химическим свойствам препараты, производные фенотиазина, представляют собой белые кристаллические порошки, растворимые или слаборастворимые в воде, хорошо растворимые в этиловом спирте (в виде солей), диэтиловом эфире и хлороформе (в виде оснований).
Изолирование аминазина, дипразина и их метаболитов рекомендуется производить спиртом, подкисленным до рН 2, 0-3, 0 10% раствором щавелевой кислоты, с последующей экстракцией основания эфиром при рН 13, 0 и реэкстракцией вещества в 0, 5 н раствор серной кислоты (изолирование по Е. М. Саломатину). Также изолирование производных фенотиазина можно проводить путем экстракции из биологического материала подкисленной водой, с последующей экстракцией органическим растворителем (диэтиловый эфир, хлороформ) из этого раствора, подщелоченного с помощью 25% раствора аммиака.
Качественное обнаружение производных фенотиазина в экстракте С растворами йодида висмута в йодиде калия и фосфорно-молибденовой кислоты производные фенотиазина дают аморфные осадки
С концентрированной серной кислотой возникает устойчивое пурпурно-красное окрашивание
С формалином и серной кислотой производные фенотиазина дают пурпурно-красное окрашивание, усиливающееся при стоянии
С концентрированной азотной кислотой возникает пурпурно-красное окрашивание (образование сульфоксида), которое быстро исчезает (образование сульфона) С 5% раствором золотохлористо-водородной кислоты аминазин (после 3-4 кратной обработки основания 0, 1 н. раствором HCl) выделяется темно-красный аморфный осадок, переходящий через 20-50 мин. в характерный кристаллический осадок. Кристаллы в виде палочек и сростков из них, напоминают снопы и сфероиды. Кристаллы оптически активны (погасание косое, угол погасания 20-300, удлинение кристаллов положительное). С реактивами Марки и Фреде тизерцин дает синевато-красную окраску; окраска у других производных фенотиазина— от красной до фиолетовой
С реактивом Манделина тизерцин дает красно-фиолетовую окраску; дипразин дает зеленую, переходящую в пурпурную окраску. Окраска у других производных фенотиазина— от красной до фиолетовой
Более надежный способ обнаружения производных фенотиазина в экстракте, а тем более для различения веществ друг от друга—обнаружение и разделение веществ с помощью хроматографии. Для этого на хроматографическую пластинку наносят каплю исследуемого раствора. Нанесенное пятно подсушивают на воздухе. Рядом наносят растворы известных препаратов, производных фенотиазина (“свидетели”) и вновь подсушивают пластинку. Затем пластинку вносят в камеру для хроматографии, насыщенную парами растворителя (смесь 25% раствора аммиака и этилового спирта в соотношении 1: 1, либо 25% раствора аммиака, этилацетата и ацетона 4: 90: 45). После хроматографирования пластинку проявляют 50% раствором серной кислоты в этиловом спирте. Затем пластинку помещают на 3-5 мин в сушильный шкаф, нагретый до 1000С. Проявившееся пятна сравнивают с пятнами “свидетелей” или по справочным значениям Rf.
Обнаружить производные фенотиазина можно также по УФ- и ИК-спектрам. Например, раствор тизерцина в этиловом спирте имеет максимумы поглощения при длине волны 255 и 310 нм, а аминазин при 254-255 нм. Основной метаболит—сульфоксидное производное фенотиазина имеет максимумы поглощения при длине волны 238-240, 273, 298 и 340 нм. Тизерцин в растворе 0, 1 н. соляной кислоты имеет максимум в области 251 и 302 нм. Дипразин, растворенный в 0, 01 н. растворе соляной кислоты, имеет максимумы поглощения при 249 и 300 нм; растворенный в смеси воды и этилового спирта (1: 1)—252 и 301 нм. В ИК-области спектра основание тизерцина (диск с бромидом калия) имеет основные пики при 1587, 1460, 1269 и 1446 см-1; дипразин имеет пики при 1459, 1222 и 757 см-1. Количественное определение производных фенотиазина и их метаболитов Фотоколориметрический метод определения основан на реакции с концентрированной серной кислотой. Фотометрирование проводят прил=508 нм в кювете 5, 105; эталон сравнения —контроль реактивов. Расчет содержания препаратов производится по калибровочному графику.
Спектрофотометрический метод основан на количественной оценке поглощения растворов препаратов в ультрафиолетовой области. Ультрафиолетовый спектр снимается в диапазоне длин волн 220-400 нм на СФ-4, СФ-4а и др. при концентрации 10 мкг/мл в пересчете на основание.
По этим методикам обнаруживается 53-60% препарата, добавленного к органам. Граница обнаружения 0, 2 мг, граница определения 0, 5 мг препарата в 100 г органов.