|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Итак, для каждой из целей Ti мы можем найти сумму рангов, определенных экспертами, и затем суммарный или результирующий ранг цели Ri. Если суммы рангов совпадают — назначается среднее значение. Метод ранговой корреляции позволяет ответить на вопрос — насколько коррелированны, неслучайны ранжировки каждого из двух экспертов, а значит — насколько можно доверять результирующим рангам? Как обычно, выдвигается основная гипотеза — об отсутствии связи между ранжировками и устанавливается вероятность справедливости этой гипотезы. Для этого можно использовать два подхода: определение коэффициентов ранговой корреляции Спирмэна или Кендэлла. Более простым в реализации является первый — вычисляется значение коэффициента Спирмэна Rs = 1 - ; {3 - 9} где di определяются разностями рангов первой и второй ранжировок по n объектов в каждой. В нашем примере сумма квадратов разностей рангов составляет 30, а коэффициент корреляции Спирмэна около 0.8, что дает значение вероятности гипотезы о полной независимости двух ранжировок всего лишь 0.004. При небходимости можно воспользоваться услугами группы из m экспертов, установить результирующие ранги целей, но тогда возникнет вопрос о согласованности мнений этих экспертов или конкордации. Пусть у нас имеются ранжировки 4 экспертов по отношению к 6 факторам, которые определяют эффективность некоторой системы. Таблица 3.3 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Факторы --> Эксперты |
1 |
2 |
3 |
4 |
5 |
6 |
Сумма |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||
A |
5 |
4 |
1 |
6 |
3 |
2 |
21 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||
B |
2 |
3 |
1 |
5 |
6 |
4 |
21 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||
C |
4 |
1 |
6 |
3 |
2 |
5 |
21 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||
D |
4 |
3 |
2 |
3 |
2 |
5 |
21 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||
Сумма рангов Сум. ранг |
15 4 |
11 2 |
10 1 |
19 6 |
12 3 |
17 5 |
84 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||
Отклонение суммы от среднего |
+1 1 |
-3 9 |
-4 16 |
+5 25 |
-2 4 |
+3 9 |
0 64 |
Заметим, что полная сумма рангов составляет 84, что дает в среднем по 14 на фактор.
Для общего случая n факторов и m экспертов среднее значение суммы рангов для любого фактора определится выражением
D {3 - 10}
Теперь можно оценить степень согласованности мнений экспертов по отношению к шести факторам. Для каждого из факторов наблюдается отклонение суммы рангов, указанных экспертами, от среднего значения такой суммы. Поскольку сумма этих отклонений всегда равна нулю, для их усреднения разумно использовать квадраты значений.
В нашем случае сумма таких квадратов составит S= 64, а в общем случае эта сумма будет наибольшей только при полном совпадении мнений всех экспертов по отношению ко всем факторам:
Smax {3 - 11}
М. Кэндэллом предложен показатель согласованности или коэффициент конкордации, определяемый как
{3 - 12}
В нашем примере значение коэффициента конкордации составляет около 0.229, что при четырех экспертах и шести факторах достаточно, чтобы с вероятностью не более 0.05 считать мнения экспертов несогласованными. Дело в том, что как раз случайность ранжировок, их некоррелированность просчитывается достаточно просто. Так для нашего примера указанная вероятность соответствует сумме квадратов отклонений S= 143.3 , что намного больше 64.
В заключение вопроса об особенностях метода экспертных оценок в системном анализе отметим еще два обстоятельства.
В первом примере мы получили результирующие ранги 10 целей функционирования некоторой системы. Как воспользоваться этой результируюзей ранжировкой? Как перейти от ранговой (Ord) шкалы целей к шкале весовых коэффициентов — в диапазоне от 0 до 1?
Здесь обычно используются элементарные приемы нормирования. Если цель 3 имеет ранг 1, цель 8 имеет ранг 2 и т. д., а сумма рангов составляет 55, то весовой коэффициент для цели 3 будет наибольшим и сумма весов всех 10 целей составит 1.
Вес цели придется определять как
(11-1) / 55 для 3 цели;
(11-2) / 55 для 8 цели и т. д.
При использовании групповой экспертной оценки можно не только выяснять мнение экспертов о показателях, необходимых для системного анализа. Очень часто в подобных ситуациях используют так называемый метод Дельфы (от легенды о дельфийском оракуле).
Опрос экспертов проводят в несколько этапов, как правило — анонимно. После очередного этапа от эксперта требуется не просто ранжировка, но и ее обоснование. Эти обоснования сообщаются всем экспертам перед очередным этапом без указания авторов обоснований.
Имеющийся опыт свидетельствует о возможностях существенно повысить представительность, обоснованность и, главное, достоверность суждений экспертов. В качестве “побочного эффекта” можно составить мнение о профессиональности каждого эксперта.
Как уже отмечалось в первой части нашего курса, в большинстве реальных больших систем не обойтись без учета “состояний природы” — воздействий стохастического типа, случайных величин или случайных событий. Это могут быть не только внешние воздействия на систему в целом или на отдельные ее элементы. Очень часто и внутренние системные связи имеют такую же, “случайную” природу.
Важно понять, что стохастичность связей между элементами системы и уж тем более внутри самого элемента (связь “вход-выход”) является основной причиной риска выполнить вместо системного анализа совершенно бессмысленную работу, получить в качестве рекомендаций по управлению системой заведомо непригодные решения.
Выше уже оговаривалось, что в таких случаях вместо самой случайной величины X приходится использовать ее математическое ожи-дание Mx. Все вроде бы просто — не знаем, так ожидаем. Но насколько оправданы наши ожидания? Какова уверенность или какова вероятность ошибиться?
Такие вопросы решаются, ответы на них получить можно — но для этого надо иметь информацию о законе распределения СВ. Вот и приходится на данном этапе системного анализа (этапе моделирования) заниматься статистического исследованиями, пытаться получить ответы на вопросы:
· А не является ли данный элемент системы и производимые им операции “классическими”?
· Нет ли оснований использовать теорию для определения типа распределения СВ (продукции, денег или информационных сообщений)? Если это так — можно надеяться на оценки ошибок при принятии решений, если же это не так, то приходится ставить вопрос иначе.
· А нельзя ли получить искомое распределение интересующей нас СВ из данных эксперимента? Если этот эксперимент обойдется дорого или физически невозможен, или недопустим по моральным причинам, то может быть “для рагу из зайца использовать хотя бы кошку” — воспользоваться апостериорными данными, опытом прошлого или предсказаниями на будущее, экспертными оценками?
Если и здесь нет оснований принимать положительное решение, то можно надеяться еще на один выход из положения.
Не всегда, но все же возможно использовать текущее состояние уже действующей большой системы, ее реальную “жизнь” для получения глобальных показателей функционирования системы.
Этой цели служат методы планирования эксперимента, теоретической и методологической основой которых является особая область системного анализа — т. н. факторный анализ, сущность которого будет освещена несколько позже.
Достаточно часто при анализе экономических систем приходится решать т. н. задачи массового обслуживания, возникающие в следующей ситуации. Пусть анализируется система технического обслужи-вания автомобилей, состоящая из некоторого количества станций различной мощности. На каждой из станций (элементе системы) могут возникать, по крайней мере, две типичных ситуации:
· число заявок слишком велико для данной мощности станции, возникают очереди и за задержки в обслуживании приходится платить;
· на станцию поступает слишком мало заявок и теперь уже приходится учитывать потери, вызванные простоем станции.
Ясно, что цель системного анализа в данном случае заключается в определении некоторого соотношения между потерями доходов по причине очередей и потерями по причине простоя станций. Такого соотношения, при котором математическое ожидание суммарных потерь окажется минимальным.
Так вот, специальный раздел теории систем — теория массового обслуживания, позволяет
· использовать методику определения средней длины очереди и среднего времени ожидания заказа в тех случаях, когда скорость поступления заказов и время их выполнения заданы;
· найти оптимальное соотношение между издержками по причине ожидания в очереди и издержками простоя станций обслуживания;
· установить оптимальные стратегии обслуживания.
Обратим внимание на главную особенность такого подхода к задаче системного анализа — явную зависимость результатов анализа и получаемых рекомендаций от двух внешних факторов: частоты поступления и сложности заказов (а значит — времени их исполнения).
Но это уже связи нашей системы с внешним миром и без учета этого факта нам не обойтись. Потребуется провести исследования потоков заявок по их численности и сложности, найти статистические показатели этих величин, выдвинуть и оценить достоверность гипотез о законах их распределения. Лишь после этого можно пытаться анализировать — а как будет вести себя система при таких внешних воздействиях, как будут меняться ее показатели (значение суммарных издержек) при разных управляющих воздействиях или стратегиях управления.
Очень редко при этом используется сама система, производится натуральный эксперимент над ней. Чаще всего такой эксперимент связан с риском потерь заказчиков или неоправданными затратами на создание дополнительных станций обслуживания.
Поэтому следует знать о таком особом подходе к вопросу моделирования систем как метод статистических испытаний или метод Монте Карло.
Вернемся к примеру с анализом работы станций обслуживания. Пусть у нас всего лишь одна такая станция и заранее известны:
l — средняя скорость поступления заказов и
m — средняя скорость выполнения заказов (штук в единицу времени), и таким образом задана величина b = l / m — интенсивность нагрузки станции.
Уже по этим данным оказывается возможным построить простейшую модель системы. Будем обозначать X число заказов, находящихся в очереди на обслуживании в единицу времени, и попытаемся построить схему случайных событий для определения вероятности P(X).
Событие — в очереди находятся точно X заказов может наблюдаться в одной из четырех ситуаций.
· В очереди было X заказов (A1), за это время не поступило ни одного нового заказа (A2) и за это же время не был выполнен ни один заказ из находящихся в работе (A3).
· В очереди было X - 1 заказов (B1), за это время поступил один новый заказ (B2) и за это же время не был выполнен ни один заказ из находящихся в работе (B3).
· В очереди было X + 1 заказов (C1), за это время не поступило ни одного нового заказа (C2) и за это же время был выполнен один заказ из находящихся в работе (C3).
· В очереди было X заказов (D1), за это время поступил один новый заказа (D2) и за это же время был выполнен один заказ из находящихся в работе (D3).
Такая схема событий предполагает особое свойство "технологии" нашей системы — вероятность поступления более одного заказа за рассматриваемую единицу времени и вероятность выполнения более одного заказа за то же время считаются равными 0.
Это не такое уж "вольное" допущение — длительность отрезка времени всегда можно уменьшить до необходимых пределов.
А далее все очень просто. Перемножая вероятности событий A1..3, B1..3, C1..3, D1..3, мы определим вероятности каждого из вариантов интересующего нас события — в течение заданного нами интервала времени длина очереди не поменялась..
Несложные преобразования суммы вероятностей всех четырех вариантов такого события приведут нас к выражению для вероятности длины очереди в X заказов:
P(X) = bx · (1-b), {3-13}
а также для математического ожидания длины очереди:
MX = b / (1-b). {3-14}
Оценить полезность такого моделирования позволят простые примеры. Пусть мы решили иметь всего лишь 50%-ю интенсивность нагрузки станции, то есть вдвое "завысили" ее пропускную способность по отношению к потоку заказов.
Тогда для b = 0.5 имеем следующие данные:
Таблица 3.4
Очередь
0
1
2
3
4 и более
Вероятность
0.5
0.25
0.125
0.0625
0.0625
Обобщим полученные результаты:
· вероятность отсутствия очереди оказалась точно такой же, как и ее наличия;
· очередь в 4 и более заказа практически невероятна;
· математическое ожидание очереди составляет ровно 1 заказ.
Наше право (если мы и есть ЛПР!) — принять такую интенсивность или отказаться от нее, но все же у нас есть определенные показатели последствий такого решения.
Полезно проанализировать ситуации с другими значениями интенсивности нагрузки станции.
Таблица 3.5
b
1 / 2
3 / 4
7 / 8
15 / 16
Mx
1
3
7
15
Обратим теперь внимание еще на одно обстоятельство — мы полагали известной информацию только о средней скорости (ее математического ожидания) выполнения заказов. Иными словами, мы считали время выполнения очередного заказа независящим ни от его "содержания" (помыть автомобиль или ликвидировать следствия аварии), ни от числа заказов, "стоящих в очереди".
В реальной жизни это далеко не всегда так и хотелось бы хоть как-то учесть такую зависимость. И здесь теория приходит на помощь (тому, кто понимает ее возможности).
Если нам представляется возможность установить не только само m (среднюю или ожидаемую скорость обработки заказа), но и разброс этой величины Dm (дисперсию), то можно будет оценить среднее число заказов в очереди более надежно (именно так — не точнее, а надежнее!):
Mx = 0.5 · . {3 - 15}
Как уже неоднократно отмечалось, системный анализ невозможен без учета взаимодействий данной системы с внешней средой. Ранее упоминалась необходимость учитывать состояния природы — большей частью случайных, стохастических воздействий на систему.
Конечно, природа не мешает (но и не помогает) процессам системы осознанно, злонамеренно или, наоборот, поощряюще. Поэтому учет внешних природных воздействий можно рассматривать как "игру с природой", но в этой игре природа — не противник, не оппонент, у нее нет цели существования вообще, а тем более — цели противодействия нашей системе.
Совершенно иначе обстоит дело при учете взаимодействий данной системы с другими, аналогичными или близкими по целям своего функционирования. Как известно, такое взаимодействие называют конкуренцией и ситуации жизни больших систем-монополистов крайне редки, да и не вызывают особого интереса с позиций теории систем и системного анализа.
Особый раздел науки — теория игр позволяет хотя бы частично разрешать затруднения, возникающие при системном анализе в условиях противодействия. Интересно отметить, что одна из первых монографий по этим вопросам называлась "Теория игр и экономического поведения" (авторы — Нейман и Моргенштерн, 1953 г., имеется перевод) и послужила своеобразным катализатором развития методов линейного программирования и теории статистических решений.
В качестве простого примера использования методов теории игр в экономике рассмотрим следующую задачу.
Пусть вы имеете всего три варианта стратегий в условиях конкуренции S1,S2 и S3 (например — выпускать в течение месяца один из 3 видов продукции). При этом ваш конкурент имеет всего два варианта стратегий C1 и C2 (выпускать один из 2 видов своей продукции, в каком то смысле заменяющей продукцию вашей фирмы). При этом менять вид продукции в течение месяца невозможно ни вам, ни вашему конкуренту.
Пусть и вам, и вашему конкуренту достоверно известны последствия каждого из собственных вариантов поведения, описываемые следующей таблицей.
Таблица 3.6
C1
C2
S1
-2000
+ 2000
S2
-1000
+3000
S3
+1000
+2000
Цифры в таблице означают следующее:
· вы несете убытки в 2000 гривен, а конкурент имеет ту же сумму прибыли, если вы приняли стратегию S1, а конкурент применил C1;
· вы имеете прибыль в 2000 гривен, а конкурент теряет ту же сумму, если вы приняли S1 против C2;
· вы несете убытки в сумме 1000 гривен, а конкурент получает такую прибыль, если ваш вариант S2 оказался против его варианта C1 , и так далее.
Предполагается, что обе стороны имеют профессиональную подготовку в области ТССА и действуют разумно, соблюдая правила — вариант поведения принимают один раз на весь месяц, не зная, конечно, что предпринял на этот же месяц конкурент.
По сути дела, в чисто житейском смысле — это обычная "азартная" игра, в которой существует конечный результат, цель игры — выигрыш.
Этой цели добивается каждый игрок, но не каждый может ее добиться. Варианты поведения игроков можно считать ходами, а множество ходов — рассматривать как партию.
Пусть партия состоит всего лишь из одного хода с каждой стороны. Попробуем найти этот наилучший ход сначала для вашего конкурента — порассуждаем за него.
Так как таблица известна как вам, так и конкуренту, то его рассуждения можно промоделировать.
Вашему конкуренту вариант C2 явно невыгоден — при любом вашем ходе вы будете в выигрыше, а конкурент в проигрыше. Следовательно, со стороны вашего противника будет, скорее всего, принят вариант C1, доставляющий ему минимум потерь.
Теперь можно порассуждать за себя. Вроде бы вариант S2 принесет нам максимальный выигрыш в 3000 гривен, но это при условии выбора C2 вашим конкурентом, а он, скорее всего, выберет C1.
Значит наилучшее, что мы можем предпринять — выбрать вариант S3, рассчитывая на наименьший из возможных выигрышей — в 1000 гривен.
Ознакомимся с рядом общепринятых терминов теории игр:
· поскольку в таблице игры наш возможный выигрыш всегда равен проигрышу конкурента и наоборот, то эту специфику отображают обычно в названии — игра с нулевой суммой;
· варианты поведения игроков-конкурентов называют чистыми стратегиями игры, учитывая независимость их от поведения конкурента;
· наилучшие стратегии для каждого из игроков называют решением игры;
· результат игры, на который рассчитывают оба игрока (1000 гривен прибыли для вас или столько же в виде проигрыша для конкурента) называют ценой игры; она в игре с нулевой суммой однакова для обеих сторон;
· таблицу выигрышей (проигрышей) называют матрицей игры, в данном случае — прямоугольной.
Рассмотренный выше ход рассуждений по поиску наилучшего плана игры в условиях конкуренции — не единственный способ решения задач. Очень часто намного короче и, главное, более логически стройным оказывается другой принцип поиска оптимальных игровых стратегий — принцип минимакса.
Для иллюстрации этого метода рассмотрим предыдущий пример игры с несколько видоизмененной матрицей.
C1
C2
S1
-2000
- 4000
S2
-1000
+3000
S3
+1000
+2000
Таблица 3.7
Повторим метод рассуждений, использованный для предыдущего примера.
· Мы никогда не выберем стратегию S1, поскольку она при любом ответе конкурента принесет нам значительные убытки.
· Из двух оставшихся разумнее выбрать S3, так как при любом ответе конкурента мы получим прибыль.
· Выбираем в качестве оптимальной стратегии S3.
Рассуждения нашего конкурента окажутся примерно такими же по смыслу. Понимая, что мы никогда не примем S1 и выберем, в конце концов, S3, он примет решение считать оптимальной для себя стратегию C1 — в этом случае он будет иметь наименьшие убытки.
Можно применить и иной метод рассуждений, дающий, в конце концов, тот же результат. При выборе наилучшего плана игры для нас можно рассуждать так:
· при стратегии S1 минимальный (min) "выигрыш" составит - 4000 гривен;
· при стратегии S2 минимальный (min) "выигрыш" составит - 1000 гривен;
· при стратегии S3 минимальный (min) выигрыш составит + 1000 гривен.
Выходит, что наибольший (max) из наименьших (min) выигрышей — это 1000 гривен и сам бог велел полагать стратегию S3 оптимальной, с надеждой на ответный ход конкурента его стратегией C1. Такую стратегию и называют стратегией MaxiMin.
Если теперь попробовать смоделировать поведение конкурента, то для него:
· при стратегии C1 максимальный (max) проигрыш составит 1000 гривен;
· при стратегии C2 максимальный (max) проигрыш составит 2000 гривен.
Значит, наш конкурент, если он будет рассуждать здраво, выберет стратегию C1, поскольку именно она обеспечивает наименьший (min) из наибольших (max) проигрышей. Такую стратегию и называют стратегией MiniMax.
Легко заметить, что это одно и то же — вы делаете ход S3 в расчете на ответ C1, а ваш конкурент — ход C1 в расчете на S3.
Поэтому такие стратегии называют минимаксными — мы надеемся на минимум максимальных убытков или, что одно и то же, на максимум минимальной прибыли.
В двух рассмотренных примерах оптимальные стратегии "противников" совпадали, принято говорить — они соответствовали седловой точке матрицы игры.
Метод минимакса отличается от стандартного пути логических рассуждений таким важным показателем как алгоритмичность. В самом деле, можно доказать, что если седловая точка существует, то она находится на пересечении некоторой строки S и некоторого столбца C. Если число в этой точке самое большое для данной строки и, одновременно, самое малое в данном столбце, то это и есть седловая точка.