Искусственная пенетройка наследственной информации, осуществляемая с определенной целью называется генетической (генной) инженерией. Генетическая инженерия осуществляется на клеточном, хромосомном и генном уровнях. Если при скрещивании двух растений с разными генотипами происходит взаимная рекомбинация их ценных и не ценных в хозяйственном отношении генов, то при применении методов генной инженерии эта проблема легко разрешается. Для этого в клетку растения, сорт которого хотят улучшить вводится ценный ген и из этой клетки выращивается зрелое растение. С помощью генетической инженерии выведены сорта хлопчатника и картофеля, которые отличаются устойчивостью против коробочного червя и колорадского жука. Но:
1. Искусственное добавление чужеродных генов сильно нарушает точно отрегулированный генетический контроль нормальной клетки. Манипулирование генами коренным образом отличается от комбинирования материнских и отцовских хромосом, которое происходит при естественном скрещивании. 2. В настоящее время генная инженерия технически несовершенна, так как она не в состоянии управлять процессом встраивания нового гена. Поэтому невозможно предвидеть место встраивания и эффекты добавленного гена. 3. В результате искусственного добавления чужеродного гена непредвиденно могут образоваться опасные вещества. 4. Существующие в настоящее время требования по проверке на безвредность крайне недостаточны. 5. Знания о действии на окружающую среду модифицированных с помощью генной инженерии организмов, привнесённых туда, совершенно недостаточны. Экологами высказаны предположения о различных потенциальных экологических осложнениях. 6. Могут возникнуть новые и опасные вирусы. Например, вирусы растений могут стать вредными для полезных насекомых, животных, а также людей. 7. Знания о наследственном веществе, ДНК, очень неполны. Известно о функции лишь трёх процентов ДНК. рискованно манипулировать сложными системами, знания о которых неполны.
125. Геннокультурная коэволюция
КОЭВОЛЮЦИЯ (со - приставка, обозначающая в ряде языков совместность, согласованность; лат. evolutio - развертывание) - термин, используемый современной наукой для обозначения механизма взаимообусловленных изменений элементов, составляющих развивающуюся целостную систему. Возникнув в биологии, понятие "К." постепенно приобретает статус общенаучной категории. В философской литературе применяется, главным образом, в двух основных смыслах: в широком - когда термином "К." обозначается совокупная, взаимно адаптивная изменчивость частей в рамках любых биосистем (от молекулярного и клеточного вплоть до уровня биосферы в целом). Примером таких отношений служат, например, взаимные изменения видов-партнеров в экосистемах "паразит - хозяин", "хищник - жертва". Результатом такой коадаптивной изменчивости может быть как сохранение биосистемы в уже достигнутом оптимальном состоянии, так и ее совершенствование. В природе коэволюционное становление и сохранение биосистем осуществляется как объективный процесс в рамках естественного отбора, который из всех возможных трансформаций тех или иных компонентов системы оставляет лишь взаимно совместимые. В более узком смысле понятие "К." используется для обозначения процесса совместного развития биосферы и человеческого общества. Концепция геннокультурной коэволюции. природы и общества, с которой первым выступил Н.В. Тимофеев-Ресовский (1968), должна определить оптимальное соотношение интересов человечества и всей остальной биосферы, избежав при этом двух крайностей: стремления к полному господству человека над природой ("Мы не можем ждать милостей от природы..." - И. Мичурин) и смирения перед ней ("Назад, в природу!" - Руссо). Согласно принципу К., человечество, для того, чтобы обеспечить свое будущее, должно не только изменять биосферу, приспосабливая ее к своим потребностям, но и изменяться само, приспосабливаясь к объективным требованиям природы. "Мы столь радикально изменили нашу среду, - утверждал Н. Винер, - что теперь для того, чтобы существовать в ней, мы должны изменить себя". Именно коэволюционный переход системы "человек - биосфера" к состоянию динамически устойчивой целостности, симбиоза и будет означать реальное превращение биосферы в ноосферу. Для обеспечения этого процесса человечество должно следовать, прежде всего, экологическому и нравственному императивам. Первое требование обозначает совокупность запретов на те виды человеческой деятельности (особенно - производственной), которые чреваты необратимыми изменениями в биосфере, несовместимыми с самим существованием человечества. По Я. Тинбергену "научное понимание нашего поведения, ведущее к его контролю, возможно, наиболее насущная задача, стоящая сегодня перед человечеством. В нашем поведении имеются такие силы, которые начинают создавать опасность для выживания вида и... для всей жизни на Земле". Второй императив требует изменения мировоззрения людей, его поворота к общечеловеческим ценностям (например, чувству уважения любой жизни), к умению ставить превыше всего не частные, а общие интересы, к переоценке традиционных потребительских идеалов и т.д. К сожалению, сознание людей очень консервативно и с трудом отказывается от стереотипных представлений об отношении человека к природе.
128. Философское значение периодического закона Менделеева
Имя и труды Менделеева пользуются мировой славой. Этот закон является могучим обобщением и орудием анализа огромнейшего арсенала хим знаний, накопленного человеч-ом и сильно обогащающегося с кажд годом. Вот как определяет смысл периодического закона сам Менделеев в своей замечательной книге «Основы химии»: «...Если все элементы расположить в порядке по величине их атомного веса, то получится периодическое повторение свойств. Это выражается законом периодичности: свойства простых тел, также формы и свойства соединений элементов, находятся в периодической зависимости (или, выражаясь алгебраически, образуют периодическую функцию) от величины атомных весов элементов».
На по существу диалектический характер изменений свойств элементов, расположенных согласно периодическому закону, много раз обращал внимание сам Менделеев. Все богатство диалектических связей и переходов, скачков и противоречий, заключенных в периодической системе, было открыто Менделеевым, хотя сам Менделеев не был сознательным диалектиком-материалистом, а применял диалектику бессознательно, стихийно. Тем не менее, именно фактическое применение диалектического метода позволило Менделееву открыть периодический закон, построить систему элементов и сделать свои замечательные предсказания, обессмертившие его имя. Менделеев исходил из убеждения, что количественные изменения свойств растут строго закономерно, каждый раз обусловливая собой качественные изменения элементов (т.е. «переходя» в качество).
Периодический закон вместе с построенной на его базе системой Мен-делеева является фундаментальным законом природы, которому подчиняются строение, свойства и поведение атомов и элементов, их рожде-ние, их жизнь, их гибель. Поэтому-то смысл отдельных физических откры-тий, касающихся атомов, становится понятным только после того, как эти открытия приводятся в связь с законом Менделеева, освещаются им, как прожектором.
129. Принцип универсального эволюционизма в науке
Универсальный эволюционизм--основа современной научной картины мира. Представления об универсальности процессов эволюции во Вселенной реализуются в современной науке в концепции глобального (универсального) эволюционизма. Его принципы позволяют единообразно описать огромное разнообразие процессов, протекающих в неживой природе, живом веществе, обществе. Концепция универсального эволюционизма базируется на определенной совокупности знаний, полученных в рамках конкретных научных дисциплин, и вместе с тем включает в свой состав ряд философско-мировоззренческих установок. Она относится к тому слою знания, который принято обозначать понятием “научная картина мира”. Универсальный (глобальный) эволюционизм характеризуется часто как принцип, обеспечивающий экстраполяцию эволюционных идей, получивших обоснование в биологии, а также в астрономии и геологии, на все сферы действительности и рассмотрение неживой, живой и социальной материи как единого универсального эволюционного процесса. Это действительно очень важный аспект в понимании глобального эволюционизма. Но он не исчерпывает содержания данного принципа. Важно учесть, что сам эволюционный подход в XX столетии приобрел новые черты, отличающие его от классического эволюционизма XIX века, который описывал скорее феноменологию развития, нежели системные характеристики развивающихся объектов. Возникновение в 40-50-х годах нашего столетия общей теории систем и становление системного подхода внесло принципиально новое содержание в концепции эволюционизма. Идея системного рассмотрения объектов оказалась весьма эвристической прежде всего в рамках биологической науки, где она привела к разработке проблемы структурных уровней организации живой материи, анализу различного рода связей как в рамках определенной системы, так и между системами разной степени сложности. Системное рассмотрение объекта предполагает прежде всего выявление целостности исследуемой системы, ее взаимосвязей с окружающей средой, анализ в рамках целостной системы свойств составляющих ее элементов и их взаимосвязей между собой. Системный подход, развиваемый в биологии, рассматривает объекты не просто как системы, а как самоорганизующиеся системы, носящие открытый характер. Формирование самоорганизующихся систем можно рассматривать в качестве особой стадии развивающегося объекта, своего рода “синхронный срез” некоторого этапа его эволюции. Сама же эволюция может быть представлена как переход от одного типа самоорганизующейся системы к другому (“диахронный срез”). В результате анализ эволюционных характеристик оказывается неразрывно связанным с системным рассмотрением объектов. Универсальный эволюционизм как раз и представляет собой соединение идеи эволюции с идеями системного подхода. В этом отношении универсальный эволюционизм не только распространяет развитие на все сферы бытия (устанавливая универсальную связь между неживой, живой и социальной материей), но преодолевает ограниченность феноменологического описания развития, связывая такое описание с идеями и методами системного анализа. В обоснование универсального эволюционизма внесли свою лепту многие естественнонаучные дисциплины. Но определяющее значение в его утверждении как принципа построения современной общенаучной картины мира сыграли три важнейших концептуальных направления в науке XX века: во-первых, теория нестационарной Вселенной; во-вторых, синергетика; в-третьих, теория биологической эволюции и развитая на ее основе концепция биосферы и ноосферы.
130. Бионика , её основные проблемы и задачи.
(от греч. bion - элемент жизни, буквально - живущий), наука, пограничная между биологией и техникой, решающая инженерные задачи на основе анализа структуры и жизнедеятельности организмов. Б. тесно связана с биологией, физикой, химией, кибернетикой и инженерными науками - электроникой, навигацией, связью, В 1960 в Дайтоне (США) состоялся первый симпозиум по Б., который официально закрепил рождение новой науки. Основные направления работ по Б. охватывают следующие проблемы: изучение нервной системы человека и животных и моделирование нервных клеток - нейронов - и нейронных сетей для дальнейшего совершенствования вычислительной техники и разработки новых элементов и устройств автоматики и телемеханики (нейробионика); исследование органов чувств и других воспринимающих систем живых организмов с целью разработки новых датчиков и систем обнаружения; изучение принципов ориентации, локации и навигации у различных животных для использования этих принципов в технике; исследование морфологических, физиологических, биохимических особенностей живых организмов для выдвижения новых технических и научных идей. Исследования нервной системы показали, что она обладает рядом важных и ценных особенностей и преимуществ перед всеми самыми современными вычислительными устройствами. Эти особенности, изучение которых очень важно для дальнейшего совершенствования электронно-вычислительных систем, следующие: 1) Весьма совершенное и гибкое восприятие внешней информации вне зависимости от формы, в которой она поступает (например, от почерка, шрифта, цвета текста, чертежей, тембра и других особенностей голоса и т.п.). 2) Высокая надёжность, значительно превышающая надёжность технических систем (последние выходят из строя при обрыве в цепи одной или нескольких деталей; при гибели же миллионов нервных клеток из миллиардов, составляющих головной мозг, работоспособность системы сохраняется). 3) Миниатюрность элементов нервной системы: при количестве элементов 1010-1011 объём мозга человека 1,5 дм3. Транзисторное устройство с таким же числом элементов заняло бы объём в несколько сот, а то и тысяч м3. 4) Экономичность работы: потребление энергии мозгом человека не превышает нескольких десятков вт. 5) Высокая степень самоорганизации нервной системы, быстрое приспособление к новым ситуациям, к изменению программ деятельности. Попытки моделирования нервной системы человека и животных были начаты с построения аналогов нейронов и их сетей. Разработаны разл типы искусственных нейронов. Созданы искуств "нервные сети", способные к самоорганизации, т. е. возвращающиеся в устойчивые состояния при выводе их из равновесия.
131. Принцип целесообразности в живой природе.
Одной из наиболее важных и сложных философских проблем современного естествознании является проблема взаимосвязи биологии и физики, физических и биологических идей и методов в познании сущности жизни, то есть физического и биологического уровней познания живой природы.
Уровней познания суть, очевидно, отражения структурных уровней материи, диалектика физико-химического и биологического в познании есть объективной диалектики неживой и живой природы. Поэтому методологической основой решения проблемы является диалектико-материалестическая концепция соотношения ступеней развития материй, созданная Энгельсом и развитая естествоиспытателями.
Анализ проблемы целесообразно начать с рассмотрения элементарного уровня - субклеточного, который непосредственно граничат с химическим макромолекулярным уровнем. Можно показать что ген, хромосома, все другие органоиды клетки суть целостные физико-химические системы. Так, ген - это комплекс пар нуклеотидов, хромосома система макромолекул ДНК и белка. Поскольку органеллы (комплексы макромолекул) взаимодействуют посредством физических электромагнитных и обменных сил, постольку и клетка сказывается целостной физико-химической системой, может быть как целое описана физикой и химией. о возможности такого описания свидетельствует и основная тенденция развития биофизики и биохимии, переходящих от описания элементов и процессов живого к описанию систем таких элементов и процессов , к объяснению биологических объектов как целого.
Вместе с тем ген хромосомы клетка выполняет биологические функции, обладают биологическими свойствами, которые суть выражения внутренней биологической определённости этих уровней живой материи, их биологического качества.
Таким образом, мы подходим к парадоксальному выводу; ген, хромосома, клетка, и последующие уровни живого это физико-химические целостности, которые могут быть описаны физикой и химией. С сзикой и химией.вни живого это физико-химические целостности которые могут быть описанны ами , которые суть выражения внутренне другой стороны, это биологические целостности, обладающие биологическим качеством, адекватно выразимо лишь в понятии биологии.
Одна из попыток решения этого парадокса состоит в признании того, чтофизическое, химическое и биологическое это лишь различные подходы к единому самому по себе объекту, это различие подходов, уровней познания дополняющих друг друга .
133. Самоорганизация как основа эволюции
Самоорганизации - процесс становления качественно нового, более высокого уровня развития системы. Многочисленные примеры самоорганизации в гидродинамических, тепловых и других физических системах, не говоря уже о системах живой природы, ученые замечали давно. Но в силу доминировавших в науке своего времени взглядов они попросту не замечали их либо старались объяснить с помощью существовавших тогда понятий и принципов. В большинстве реальных случаев приходится учитывать изменение систем во времени, т.е. иметь дело с необратимыми процессами. Впервые такие процессы стали изучаться в термодинамике, которая начала исследовать принципиально отличные от механических тепловые явления. Но понятие эволюции в классической термодинамике рассматривается совсем иначе, чем в общепринятом смысле. Очевидно, что для объяснения процессов самоорганизации необходимо было ввести новые понятия и принципы, которые бы адекватно описывали реальные процессы самоорганизации, происходящие в природе и обществе.
Наиболее фундаментальным из них является понятие открытой системы, которая способна обмениваться с окружающей средой веществом, энергией и информацией. Поскольку между веществом и энергией существует взаимосвязь, постольку можно сказать, что система в ходе своей эволюции производит энтропию, которая, однако, не накапливается в ней, а удаляется и рассеивается в окружающей среде. В систему из внешней среды поступает свежая энергия, и именно вследствие такого непрерывного обмена энтропия системы может не возрастать, а оставаться неизменной или даже уменьшаться. Отсюда становится ясным, что открытая система не может быть равновесной, потому ее функционирование требует непрерывного поступления энергии и вещества из внешней среды, вследствие чего неравновесие в системе усиливается. В конечном итоге прежняя взаимосвязь между элементами системы, т.е. ее прежняя структура, разрушается. Между элементами системы возникают новые когерентные, или согласованные, отношения, которые приводят к кооперативным процессам и к коллективному поведению ее элементов. Так схематически могут быть описаны процессы самоорганизации в открытых системах, которые связаны с диссипацией, или рассеянием, энтропии в окружающей среде.
134.Виртуальная реальность
Виртуальная реальность - высокоразвитая форма компьютерного моделирования, которая позволяет пользователю погрузиться в искусственный мир и непосредственно действовать в нем с помощью специальных сенсорных устройств, которые связывают его движения с аудиовизуальными эффектами. При этом зрительные, слуховые, осязательные и моторные ощущения пользователя заменяются их имитацией, генерируемой компьютером. Характерными признаками виртуальной реальности являются: - моделирование в реальном масштабе времени; - имитация окружающей обстановки с высокой степенью реализма; - возможность воздействовать на окружающую обстановку и иметь при этом обратную связь. Использование компьютера требует от нас изучения не столько нового языка, сколько новой культуры. Некоторым людям эта идея кажется восхитительной, остальных одолевают страх и опасения. В настоящее время мы окружены океаном фактов. Их можно воспринимать не только как числовые ряды, но и как текст, образы, голос, музыку. Вообще, идея виртуального мира не нова. Она содержится уже в использовании объектно-ориентированного программирования, манипулятора "мышь" для создания изображений, графическом интерфейсе пользователя или компьютерных тренажерах для "безболезненного" испытания новых устройств. По некоторым данным, термин "виртуальная реальность" был придуман в Массачусетском Технологическом Институте в конце 1970-х годов, чтобы выразить идею присутствия человека в компьютерно создаваемом пространстве: идея интерактивности уже была в фокусе многих экспериментов в МТИ. Затем она перешла в Лаборатории Атари, где в начале 1980-х работали многие выпускники МТИ, а дальше получила распространение в индустрии компьютерных игр. Первый инструмент проникновения в виртуальную реальность дан нам от рождения - это мозг и его сенсорные рецепторы. Главным средством нашего восприятия является визуальная система. Остальные чувства помогают обрести нашему взгляду на мир полноту. У нас семь основных чувств: зрение, слух, осязание, обоняние, вкус, равновесие и ориентация. На наше восприятие влияют пересечения этих чувств, как, например, чувство движения (жеста), различающееся не только глазами, но и самим телом. Мозг интегрирует все получаемые им сигналы ото всех рецепторов и сопоставляет новые данные с теми, что уже имеются в нашей памяти. Диссонанс восприятия, когда сигналы разноречивы, может вызвать дезориентацию, растерянность и даже болезнь. Современная технология виртуальной реальности - это ответвление компьютерной графики, повлиявшей на все - от составления карт до телерекламы. Одна из разновидностей использования виртуальной реальности полного погружения называется телеприсутствием. Это идеально для работы с роботами, особенно в опасных условиях: в открытом космосе, в морских глубинах, в ядерной инженерии и т.п. Такой подход требует значительного развития тактильной и кинэстетической обратной связи. Уже сейчас он применяется в обучении, аттракционах, на научных конференциях и в другой пассивной деятельности. Применение виртуальной реальности в обучении и тренировках показывает, сколь велика может быть немедленная отдача от нее. Сравнительно недавно предложены концепции виртуальных библиотек и музеев. В качестве доступа к книгам и другой печатной продукции библиотеки будет использоваться телеприсутствие. Пользователь сможет перемещаться внутри визуального изображения книжных полок, находить то, что ему нужно, и сразу погружаться в чтение, а при наличии разрешения делать копии.
135. Эвристическое мышление
Мышление - активный процесс отражения объективного мира в понятиях, суждениях, теориях и т. п., связанный с решением тех или иных задач, с обобщением и способами опосредствованного познания действительности; высший продукт особым образом организованной материи -- мозга. М. свойственны такие процессы, как абстракция, обобщение, анализ и синтез, постановка определенных задач и нахождение путей их решения, выдвижение гипотез, идей и т. п. Эвристический - относящийся к изобретению, открыванию, а также служащий нахождению нового (новых идей, новых фактов); большими эвристическими ценностями являются гипотезы как вспомогательные средства для исследования. Таким образом, эвристическое мышление, в основе которого лежит интуиция, ведет к получению качественно нового знания. Ведь философия - это практика переустройства нервной деятельности посредством эвристического мышления.
136. Идея космизма в философии
КОСМИЗМ (греч. kosmos - организованный мир, kosma - украшение) - философское мировоззрение, в основе которого располагается знание о Космосе и представление о человеке как "гражданине Мира" (киники, стоики, Кант, Мамардашвили), а также о микрокосмосе, подобном Макрокосмосу. В философии понятие К. связано с учением древних греков о мире как структурно-организованном и упорядоченном целом. Пифагор предложил понимание космоса как Универсума; Гераклит разрабатывал учение о Космосе как "Мирострое". У Платона Космос - упорядоченная часть Вселенной, противоположная Хаосу. Гностицизм, возникший на основе иудо-христианской идеи грехопадения, описывал Космос как творение злого демиурга, природу как "ущербную", а задачу человека видел в высвобождении духа из материи. Геродот ввел понятие Космоса для обозначения государственного политического строя как системы, устроенной по космическим законам. В средневековье Коперник и Бруно дополняют теорию Космоса учением о множественности обитаемых миров. В религиозных системах К. является неотъемлемой частью теологии. Для эзотерических учений (каббала, теософия) К. связан с астрологическими знаниями о Вселенной и человеке, который телесно и духовно отражает в себе звездное небо. В науке учение о К. основано на теориях о рождении и эволюции Вселенной: концепции Канта-Лапласа (18 в.) об образовании солнечной системы конденсацией пылеобразных масс; теории расширяющейся Вселенной А. Фридмана, разлетающихся галактик Э. Хаббла (20 в.), теории относительности А. Эйнштейна и др. Исторически научная мысль о Космосе связана с борьбой сторонников гелио - и геоцентрической систем. В настоящее время научные представления о Космосе опираются на теорию Большого взрыва.
137. БИОЭТИКА
Представляет собой важную точку филосо знания. Форм-ие и развитие биоэтики связано с процессом трансформации традиционной этики вообще, медиц и биол этики в частности. Оно обусловлено, прежде всего, резко усиливающимся вниманием к правам человека (в медицине - это права пациента, испытуемого и т.д.) и созданием новых медицинских технологий, порождающих множество проблем, требующих решения, как с точки зрения права, так и морали. Кроме того, формирование биоэтики обусловлено грандиозными изменениями в технол-ом оснащении совр медицины, огромными сдвигами в медико-клинической практике, которые стали возможными благодаря успехам генной инженерии, трансплантологии, появления оборудования для поддержания жизни пациента и накопления соответствующих практических и теорет знаний. Все эти процессы обострили моральные проблемы, встающие перед врачом, перед родственниками больных, перед средним медперсоналом. Сущ-ют ли пределы оказания медиц помощи, и каковы они в поддержании жизни смертельно больного человека? Допустима ли эвтаназия? С какого момента следует отсчитывать наступление смерти? С какого момента зародыш можно считать живым существом? Допустимы ли аборты? Вот лишь некоторые из тех вопросов, которые встают перед врачом, а также перед широкой общ-тью при совр уровне развития мед науки. БИОЭТИКА как иссл-ое напр-ие междисциплинарного хар-ра сформировалось в кон. 60-х - нач.70-х гг. Термин «БИОЭТИКА» предложен В. Р. Поттером в 1969 г. Трактовка ее разнородна. Прежде всего, биоэтику пытаются отождествлять с биомедицинской этикой, ограничив ее содержание этическими проблемами отношений «врач - пациент». Более широкое понимание биоэтики включает в себя ряд аксиологических, социальных проблем и проблем, связанных с системами здравоохранения и с отношением человека к животным и растениям. Кроме того, термин «биоэтика» указывает на то, что она ориентируется на исследования живых существ независимо от того, находят ли они свое применение в терапии или нет. Иными словами, биоэтика ориентируется на достиж-ия совр биологии при обосновании или решении моральных коллизий, возникающих в ходе научных исследований. Биоэтика (принцип «уважения прав и достоинства человека»).Современная медицина, биология, генетика и соотв-щие биомедиц технологии вплотную подошли проблеме прогнози-ия и упр-ия наслед-тью, проблеме жизни и смерти организма, контроля функций чел организма на тканевом, клеточ и субклеточн уровне.
138. Биотехнология ее основные проблемы и задачи.
Биотехнология(далее Б) -- междисциплинарная область научно-технического прогресса, возникшая на стыке биологических, химических и технических наук. Биотехнол-ий процесс включает ряд этапов: подготовку объекта, его культивирование, выделение, очистку, модификацию и использование продуктов. Многоэтапность процесса обусл-ет необх-ть привлечения к его осущ-ию самых разл специалистов: генетиков и молекул-ых биологов, биохимиков и биооргаников, вирусологов, микробиологов и кле-точных физиологов, инженеров-технологов, конструкторов био-технол-ого обор-ия и др. Биотехнол-ие разработки могут внести немаловажн вклад в решение комплексных проблем народного хозяйства, здравоохранения и науки.
Для удовлетворения пищевых потребностей необходимо уве-личить эффективность растениеводства и животноводства. Имен-но на это, в первую очередь, нацелены усилия биотехнологов. Кроме того, биотехнология предлагает как источник кормового (возможно, и пищевого) белка клеточную массу бактерий, гри-бов и водорослей. Во-вторых, повышение цен на традиционные источники энер-гии (нефть, природный газ, уголь) и угроза исчерпания их запа-сов побудили человечество обратиться к альтернативным путям получения энергии. Б может дать ценные возобнов-ляемые энергетические источники: спирты, биогенные углеводо-роды, водород. В-третьих, уже в наши дни биотехнология оказывает реаль-ную помощь здравоохранению. Нет сомнений в терапевтической ценности инсулина, гормона роста, интерферонов, факторов свер-тывания крови и иммунной системы, тромболитических фермен-тов, изготовленных биотехнол путем. Помимо получе ния лечебных средств, Б позволяет проводить ран-нюю диагностику инфекционных заболеваний и злокачественных новообразований на основе применения препаратов антигенов, моноклональных антител, ДНК/РНК-проб. С помощью новых вакцинных препаратов возможно предупреждение инфекционных болезней.
В-четвертых, Б может резко ограничить масшта-бы загрязнения нашей планеты промышленными, сельскохозяй-ственными и бытовыми отходами, токсичными компонентами ав-томобильных выхлопов и т. д. Современные разработки нацелены
на создание безотходных технологий, на получение легко раз-рушаемых полимеров (в частности, биогенного происхождения: поли-?-оксибутирата, полиамилозы) и поиск новых активных микроорганизмов-разрушителей полимеров (полиэтилена, поли-пропилена, полихлорвинила). Биотехнологические разработки играют важную роль в добы-че и переработке полезных ископаемых, получении различных препаратов и создании новой
139, 140. Понятие «живое вещество». Основные принципы эволюции живого вещества в биосфере (по В.И.Вернадскому).
Понятие о живом веществе является центральным в концепции В.И. Вернадского о биосфере. Вернадский определяет «живое вещество» как совокупность живых организмов. Кроме растений и животных, В.И. Вернадский включает сюда и человека, влияние которого на геохимические процессы отличается от воздействия остальных живых существ, во-первых, своей интенсивностью, увеличивающейся с ходом геологического времени; во вторых, тем воздействием, какое деятельность людей оказывает на остальное живое вещество. Это воздействие сказывается, прежде всего, в создании многочисленных видов культурных растений и домашних животных. Такие виды не существовали раньше и без помощи человека либо погибают, либо превращаются в дикие породы. Поэтому Вернадский рассматривает геохимическую работу живого вещества в неразрывной связи животного, растительного царства и культурного человечества как работу единого целого. В состав биосферы входит не только живое вещество, но и разнообразные неживые тела, которые В.И. Вернадский называет косными (атмосфера, горные породы, минералы, и т.д.), а также биокосные тела, образованные из разнородных живых и косных тел (почвы, поверхностные воды и т.д.). Хотя живое вещество по объему и весу составляет незначительную часть биосферы, но оно играет основную роль в геологических процессах, связанных с изменением облика нашей планеты. Поскольку живое вещество является определяющим компонентом биосферы, постольку можно утверждать, что оно может существовать и развиваться только в рамках целостной системы биосферы. Не случайно, поэтому В.И. Вернадский считает, что живые организмы являются функцией биосферы и теснейшим образом материально и энергетически с ней связаны, являются огромной геологической силой, ее определяющей. Исходной основой существования биосферы и происходящих в ней биогеохимических процессов является астрономическое положение нашей планеты и в первую очередь ее расстояние от Солнца и наклон земной оси к эклиптике или к плоскости земной орбиты. Это пространственное расположение Земли определяет в основном климат на планете, а последний в свою очередь - жизненные циклы всех существующих на ней организмов. Солнце является основным источником энергии биосферы и регулятором всех геологических, химических и биологических процессов на нашей планете. В.И. Вернадский высказывает предположение, что живое вещество, возможно, имеет и свой процесс эволюции, проявляющийся в изменении с ходом геологического времени, вне зависимости от изменения среды. Для подтверждения своей мысли он ссылается на непрерывный рост центральной нервной системы животных и ее значение в биосфере, а также на особую организованность самой биосферы. По его мнению, эту организованность можно выразить так, что ни одна из точек биосферы “не попадает в то же место, в ту же точку биосферы, в какой когда-нибудь была раньше”. В современных терминах это явление можно описать как необратимость изменений, которые присущи любому процессу эволюции и развития. Непрерывный процесс эволюции, сопровождающийся появлением новых видов организмов, оказывает воздействие на всю биосферу в целом, в том числе на природные биокосные тела, например, почвы, наземные и подземные воды и т.д. Таким образом, эволюция видов постепенно распространяется и переходит на всю биосферу.
141. Значение геологической теории Лайеля в развитии диалектических воззрений на природу
В XVIII -- первой половине XIX в. была обстоятельно разработана концепция униформизма (Дж. Геттон, Ч. Лайель, М. В. Ломоносов, К. Гофф и др.). Униформизм выдвигает принцип познаваемости истории Земли и органического мира. Ядром униформизма являлся актуалистический метод, который, по замыслу, его основополжников (прежде всего Ч. Лайеля), должен был стать ключом для познания древних геол процессов. Актуалистический метод предполагал преемственность прошлого и настоящего, тождественность соврх и древних геол процессов. По хар-ру совр геол процессов можно с опр степенью приближения описать закон-сти древних процессов, в том числе и обр-ие горных пород. Пропагандируя всемогущество актуалистического метода, Ч. Лайель писал, что с его помощью человек становится способным “не только исчислять миры, рассеянные за пределами нашего слабого зрения, но даже проследить события бесчисл веков, предшествовавших созданию человека и проникнуть в сокровенные тайны океана или внутренностей земного шара”'. Вместе с тем сам Лайель систематически применял актуалистический метод лишь к неживой природе, а в области органических процессов он делал серьезные уступки катастрофизму, допуская возможность актов божественного творения органических форм. В 1830-1833 гг. появился труд Чарльза Лайеля «Основы геологии», который с тех пор стал фундаментом соврой геолй науки. Лайель допускал, что сначала отложился самый нижний слой осадочных пород, и поэтому первыми по времени были окаменевшие формы жизни, находившиеся в этих породах; обычно это были простые морские существа. Все вышележащие слои отложились позднее, и он решил, что формы жизни в этих слоях как бы образуют снизу доверху шкалу восходящей сложности. Однако, в «летописи» окаменелостей набл-ось немало нарушений посл-ти: сложные существа внезапно обнаруживались над или - что еще хуже - под слоями, содержащими окаменелости сравнительно простых существ. Не было встречено ни одного безупр-го набора осадочных пород, кот содержал бы последоват-ое расп-ие каждой формы окаменелостей. На бумаге Лайель создал воображаемую геол колонку, явл и в наши дни жизненно важным инструментом в таких областях, как нефтеразведка. Практически восходящий порядок окаменелостей не сущ-ет. В природе он представлен крайне фрагментарно, и часто слои перепутаны или отс-ют вообще. Однако самое главное было сделано: в науке стало утв-ся мнение об огромных сроках существ- ия мира. Лайель отметил, что условия для непрерывного накопления осадков наименее благоприятны на континентах. Сохранение органических остатков в земных пластах он правильно считал следствием счастливого стечения обстоятельств.
142. Геологическая форма движения, её специфика и соотношение с другими формами движения.
Вопрос о природе объекта геологии в свете учения о формах движения материи возник в начале 30-х годов и совпал с поисками путей выхода из кризиса, в котором оказалась геология в результате крушения контракционной гипотезы. Единство геологического знания, опиравшееся на идею медленного остывания и, соответственно, сжатия (контракции) Земли, было разрушено обнаружением крупных зон растяжения земной коры (рифтовых зон океанских плит); обнаружением радиоактивных источников энергии в ней, препятствующих ее остыванию; выяснением громадной роли в развитии Земли воды и живого вещества. Требовались новые идеи для объяснения этих фактов и объединения данных классической геологии с данными геофизики и геохимии.Несмотря на все недостатки, в 30-х годах сформировалось понимание объекта геологии как целлостной материальной системы со своим особым способом существования, своей специфической формой движения материи, которая получила название “геологической формы движения Земли”, а отдельные процессы, такие, как минералогенез, петрогенез,- ”частные геологические формы движения”. Вместе с тем вопрос о месте геологической формы движения и ее отличии от других форм движения не стоял. Идея геологической формы движения еще не была осознана как научная проблема
Геологическая форма движения включает в себя комплекс физико-химических процессов, связанных с образованием всевозможных минералов, руд и других веществ
в условиях больших температур и давлений.
Одним из главных вопросов, встающих при обосновании геологической формы движения,- это вопрос о ее материальном “носителе”. Одни исследователи считают, что таким носителем должна быть планета, другие- часть планеты, земная кора. Ряд сторонников первой точки зрения поэтому предлагают именовать выделяемую форму движения не геологической, а планетной, или планетарной. Причем некоторые из них (Г.Л.Поспелов и др.) считают геологическую форму движения частным случаем планетарной, тогда как для других (Г.П.Горшкова, М.М.Одинцова и др.) планетарная и геологическая форма- в сущности одно и то же. Другие исследователи (А.А.Каденский, В.А.Апродов и др.) полагают, что геологическая форма движения присуща не всем планетам (например, не присуща Юпитеру и Сатурну), а лишь тем, у которых имеется образование, подобное земной коре. Поэтому они считают, что геологической форме движения должна предшествовать планетарная- как самостоятельная ступень развития природы , Б.М.Кедров относит к ней все процессы неорганической природы в рамках отдельного космического тела- от минералообразования до взаимодействия оболочек планеты, включая взаимодействие между неорганической природой и органической. В этом за ним следуют большинство авторов, выступающих с обоснованием идеи геологической формы движения. В.А.Апродов в своих работах сначала выделял несколько геологических форм движения, затем пришел к выводу, что все они суть виды единой геологической формы движения.
144. Философское значение идей В. И. Вернадского о биогеохимическом процессе.
В. И. Вернадский, изу-чавший взаимодействие живых и неживых систем, выдвинул принцип неразрывной связи живого и неживого, переосмыслив понятие био-сферы. Он понимал биосферу как сферу единства живого и неживого. Вернадский в своих работах раскрывает корни этого единства, значение организованности биосферы в развитии человечества. Это позволяет понять место и роль исторического развития человечества в эволюции биосферы, закономерности ее перехода в ноосферу.