Рефераты

Автоматизация теплового пункта гражданского здания

Машинные результаты программы приведены в таблицах 2.2 и 2.3.

Таблица 2.2 - Технические характеристики клапана регулятора перепада давления для контуров отопления и ГВС

Параметры клапана

Значения

Тип

VFG2

dP клапана, бар

0.38

Условный проход, мм

50

Максимальная пропускная способность, м3/ч

32

Рабочее давление, бар

16

Параметры клапана

Значения

Место установки

Любое место

Среда

Циркуляционная вода

Альтернативная среда 1

30% гликолевый раствор

Тмин, оС

2

Тмакс, оС

200

Количество ходов

два

Позиция шпинделя

Нормально открытый

Тип присоединения

Фланцевый

Материал клапана

GG-25

Макс. устанавливаемый перепад давлений, бар

16

Ход штока, мм

12

Характеристика регулирования

Линейная

Фактор кавитации

0,5

Протечка (макс)

Макс. 0,05 % kvs

Разгруженный по давлению

Да

Внешний вид

Таблица 2.3 - Информация о приводе регулятора перепада давления

Технические параметры привода

Значения

Тип

AFPA

Место установка

На байпасе

Среда

Циркуляционная вода

Альтернативная среда

30% гликолевый раствор

Тмин, оС

2

Тмакс, оС

150

Материал

Сталь, материал № 1,0338, оцинкованная с покрытием

Функция

Разгруженный регулятор перепада давления

Настройка

Изменяемая

Мин. допустимый перепад давления, бар

0,5

Макс. допустимый перепад давления, бар

2,5

Максимальное рабочее давления, бар

16

Технические параметры привода

Значения

Внешний вид

2.2.2.2 Выбор регулирующих клапанов и исполнительных механизмов

Регулирующие клапаны с электроприводами применяются в качестве исполнительных механизмов систем регулирования температуры. Управляющими устройствами для клапанов могут быть специализированные электронные регуляторы температуры серии ECL или регуляторы глобальной системы диспетчеризации.

Клапаны различаются следующими параметрами:

по количеству регулируемых потоков -- проходные (двухходовые) (VS2, VM2, VB2, VF2, VFS2, VFG2), трехходовые (VMV, VRG3, VF3, VFG33, HRE3, HFE3) и четырехходовые (HRE4, HFE4);

по принципу действия -- поворотные серии HRE и HFE и седельные -- все остальные. По сравнению с поворотными седельные клапаны обеспечивают более качественное регулирование и меньшую протечку в закрытом состоянии, а также способны работать при высоких параметрах регулируемой среды и перепадах давлений.

Седельные клапаны бывают нажимного действия (нормально открытые, например, типа VMV, VM2, VFG2 или VB2) и возвратно-поступательного (например, типа VF2, VF3,VRG3).

Электропривод - исполнительный механизм, воспринимающий командный сигнал от электронного регулятора и преобразующий его в воздействие на регулирующий клапан. Он представляет собой электромотор, вращение которого через передаточный механизм преобразуется в поступательное движение, передаваемое на шток регулирующего клапана. Между количеством оборотов двигателя и ходом штока клапана создана четкая взаимосвязь, позволяющая устанавливать необходимую пропускную способность регулирующего клапана адекватно изменениям регулируемого объекта.

Объекты регулирования могут иметь различную инерционность, поэтому для них применяют приводы с соответствующей скоростью перемещения штока. По скорости действия различают быстрые и медленные электроприводы: у быстрых - время перемещения штока регулирующего клапана на 1 мм до 3 с; у медленных - свыше 14 с. В соответствии с этим выбирают область применения электроприводов. Например, быстрые - для систем горячего водоснабжения со скоростным теплообменником, а медленные - для инерционных систем, таких как системы отопления и горячего водоснабжения с емкостными бойлерами.

При выборе электропривода следует обращать внимание на развиваемое им усилие, т. е. противодействие давлению теплоносителя, передаваемого через шток клапана на двигатель. Для клапана с неразгруженным по давлению затвором максимально допустимое усилие на привод указано в техническом описании к клапану и является функцией перепада давления на клапане и условного диаметра клапана. По этим значениям необходимо осуществлять проверку работоспособности клапана. Если перепад давления теплоносителя при закрытом клапане не превышает допустимого усилия на электропривод, значит, эти элементы совместимы. Если нет, то следует перед клапаном снизить давление регулятором перепада давления, либо заменить клапан на разгруженный по давлению. У такого клапана конструктивно минимизировано влияние давления теплоносителя на затвор и, следовательно, на электропривод. Максимально допустимое усилие на его штоке не зависит ни от перепада давления теплоносителя, ни от типоразмера.

По управляющему сигналу электроприводы классифицированы: на AME и AMV. Положение штока клапана с приводом AME зависит от значения управляемого сигнала - силы тока, либо напряжения. Положение штока клапана с приводом AMV зависит от так называемого трехпозиционного сигнала. При этом за счет длительности и полярности управляющего сигнала шток клапана может занимать любое промежуточное положение.

Регулирующие клапаны с исполнительными механизмами для систем отопления и горячего водоснабжения выбираются программой подбора клапанов компании «Danfoss» версии 1.2, который находится на сайте: http://ru.heating.danfoss.com. Для выбора регулирующего клапана с исполнительным механизмом (электроприводом) для контуров отопления и ГВС необходимо ввести в память программы подбора клапанов исходные данные, приведенные в таблице 2.4. Технические характеристики выбранных регулирующих клапанов и приводов для контуров отопления и горячего водоснабжения приведены соответственно в таблицы 2.5 и 2.6.

Таблица 2.4 - Исходные данные для выбора регулирующих клапанов и исполнительных механизмов для контура отопления и ГВС

Параметры настройки

Значения

для отопление

для ГВС

Область применения

Отопление и холодоснабжение

Ограничение расхода

нет

Среда

Вода

Температура подаваемого

теплоносителя, °C

95

Температура возвращаемого теплоносителя, °C

70

Тепловая мощность нагрузки, кВт

210,21

360,65

dP на клапане, бар

0,102

Доля потерь давления на клапане Va

0,5

Параметры настройки

Значения

для отопление

для ГВС

Располагаемый напор dP, бар

0,204

Потеря давления в системе, бар

0,102

Величина расхода, л/с

2,01

3,45

величина kv, м3/ч

22,86

39,22

Таблица 2.5 - Технические характеристики регулирующих клапанов для систем отопления и горячего водоснабжения

Технические параметры клапана

Значения

Вид тепловой нагрузки

система отопления

система ГВС

Тип

VF 2

dP клапана, бар

0,0852

0.0962245

Доля потерь давления на клапане

0,42

0,48

Условный проход, мм

40

50

Максимальная пропускная способность, м3/ч

25

40

Макс. рабочее давление, бар

16

Среда

циркуляционная вода

Альтернативная среда 1

50% гликолевый раствор

Тмин, °C

минус 10

Тмакс, °C

130

Количество ходов

двухходовой

Позиция шпинделя

Нет

Тип присоединения

фланцевый

Материал клапана

серый чугун EN-GJL-250 (GG-25)

Ход штока, мм

15

Характеристика регулирования

логарифмическая

Фактор кавитации

0,5

Относительный диапазон регулирования

Min. 100:1

Протечка (макс.)

макс. 0,05 % kvs

Разгруженный по давлению

нет

Примечание

максимальное рабочее давление для воды 16 бар при 120 °C

Технические параметры клапана

Значения

Вид тепловой нагрузки

система отопления

система ГВС

Внешний вид

Таблица 2.6 - Информация о электроприводах к регулирующим клапанам контуров отопления и ГВС

Технические параметры электропривода

Численные значения

Вид тепловой нагрузки

Система отопления

Система ГВС

Тип

AMV 15

AMV 25

Время перемещения штока, с

165

dP макс, кПa

100

900

Функция безопасности

Нет

Напряжение, В

230

Частота, Гц

50

Потребляемая мощность, Вт

2,15

Класс защиты корпуса

54 IP

Управление сигналом

трехпозиционным

Развиваемое усилие, Н

500

1000

Макс. ход штока, мм

15

Время перемещения штока, с/мм

11 

Время поворота на 90°, с

0

Функция безопасности

0

Ручное управление

Да

С опускной (возвратной) пружиной

Нет

С подъёмной пружиной

Нет

Скорость перемещения штока

нормальный

Тмин окр. среды, °C

Тмакс окр. среды, °C

55 

Т мин хранения и транспортировки, °C

минус 40 

Окончание таблицы 2.6

Технические параметры электропривода

Численные значения

Вид тепловой нагрузки

Система отопления

Система ГВС

Тмакс хранения и транспортировки, °C

70 

Примечание

Не допускается установка под клапаном. Макс. температура среды 150°C (200°C с адаптером или при горизонтальной установке).

Внешний вид

2.2.2.3 Выбор теплообменника для системы горячего водоснабжения

Тепловые пункты могут оснащаться водоподогревателями на базе пластинчатых теплообменников фирмы «Danfoss», которые разработаны специально для систем централизованного теплоснабжения. Основой теплообменника являются профилированные тонколистовые пластины из нержавеющей стали различных размеров, которые собираются в пакеты в зависимости от индивидуальных теплотехнических, гидравлических и конструктивных требований к водоподогревателю. В зависимости от технологии изготовления теплообменники могут быть паяными или разборными

Паяные теплообменники бывают одноходовыми и двухходовыми, в которые вода поступает последовательно через две секции подогревателя, выполненного в едином блоке. Эти теплообменники компактны, надежны, легки, но не подлежат ремонту или модернизации. Очистка паяного теплообменника производится методом промывки специальным раствором с использованием установки BOY-C-30.

Разборные теплообменники изготавливаются, как правило, в одноходовом исполнении и позволяют видоизменять подогреватель (наращивать или уменьшать поверхность теплообмена), производить его ремонт (заменять пластины или прокладки), механически чистить пластины в процессе эксплуатации, однако они более громоздкие и дорогие.

Общепринятых рекомендаций по области применения неразборных или разборных пластинчатых теплообменников нет. Общим подходом является применение разборных конструкций при теплоносителе плохого качества. В то же время, неразборные теплообменники предпочтительнее для большинства случаев применения по экономическим показателям. Кроме того, они прочнее разборных теплообменников. К тому же большинство из них имеют меньший вес и размеры.

Теплообменник для системы горячего водоснабжения выбирается программой «Heat Exchanger Calculation Tool» производства фирмы «Danfoss». В программу вводится максимально часовая мощность системы горячего водоснабжения, расход горячей воды и температуры входящей и выходящей из теплообменника сетевой воды. Пользовательский интерфейс программы приведен на рисунке 2.7. Технические параметры выбранного теплообменника приведены в таблице 2.7. Габаритные размеры теплообменника показаны на рисунке 2.8.

Таблица 2.7 - Параметры теплообменника для системы ГВС

Технические параметры теплообменника

Значения

Тип теплообменника

XG 10-1 30

Мощность, КВт.

362,8

первичная сторона

вторичная сторона

Расход, м3/ч

12,772

5,829

Входная температура,°C

95

5

Выходная температура, °C

70

58,9

Деств. обр. темп.

70

LMTD

49,1

Потери напора, бар

3,42

0,741

Скорость, м/с

6,1

2,8

Скорость, м/с

1,049

0,447

Число/Контур

14

15

Объем воды, л.

0,63

0,68

Технические параметры теплообменника

Значения

первичная сторона

вторичная сторона

Максимально допустимое давление, бар

16

Максим. допустимая температура, 0С

150

Запас поверхности, %

0,00

Поверхность теплообмена, м2

0,60

Вес, кг

22,0

A - 76 мм. B - 158 мм. C - 65 мм. D - 235 мм. E - 188 мм. F - 460 мм. Lmax - 500мм.

T11 на входе греющего контура

T12 на выходе греющего контура

T21 на входе нагреваемого контура

T22 на выходе нагреваемого контура

2.2.2.4 Выбор циркуляционных насосов для контуров отопления и горячего водоснабжения

Насос является основным элементом водяной инженерной системы здания. Его работа полностью взаимосвязана со всем оборудованием системы, в том числе и запорно-регулирующей арматурой. От их совместной работы зависит эффективность функционирования всей системы. Особенно это касается систем с переменным гидравлическим режимом, где регулирование расходом теплоносителя приводит к изменению гидравлических и электрических параметров насоса.

Подбирают насос по расчетному расходу и потерям давления в системе при частично закрытых терморегуляторах

Для системы отопления следует выбрать насос с расчетным расходом теплоносителя более 7,2524 м3/ч. и напором насоса больше 9 м. Допустимая температура перекачиваемой среды насоса до 1000С.

Параметры циркуляционного насоса Wilo TOP-S 30/10 EM достаточны для применения его в системе отопления. Внешний вид насоса Wilo TOP-S 30/10 EM показан на рисунке 2.9.

Циркуляционный насос с резьбовым соединением Wilo TOP-S 30/10 EM применяется в системах охлаждения, водяного отопления, кондиционирования.

К основным достоинствам можно отнести простой монтаж, надежность в работе, три ступени частоты вращения. Насос состоит из чугунного корпуса, вала из нержавеющей стали и рабочего колеса, изготовленного из композитных материалов. Допустимые перекачиваемые жидкости: вода систем отопления и водогликолевая смесь. Данные циркуляционного насоса Wilo TOP-S 30/10 EM для контура отопления получены из сайта http://www.pompa.kiev.ua/find_goods.php.

Основные технические характеристики:

напор макс……………………………...……………………………11 м.

расход макс……………………………………….……………….11 м3/ч.

подключение к сети………...………………….……….. 1~230 В, 50 Гц

температура перекачиваемой среды…….....от минус 10°С до + 130°С

рабочее давление макс………........…………...……….……….10 бар

трубное соединение………….…...……………………………… Rp11/4

Для системы горячего водоснабжения насос необходимо выбирать по расчетному расходу потребляемой горячей воды, который является равным 1,75м3/ч. и по падению давления в системе горячего водоснабжения 0,6 атм. Этим требованиям отвечают технические характеристики насоса Wilo Star-Z 20/7 CircoStar. Внешний вид выбранного насоса показан на рисунке 2.10.

Циркуляционный насос системы горячего водоснабжения Wilo Star-Z 20/7 CircoStar. применяется для системы циркуляции горячей питьевой воды. К основным особенностям можно отнести три ступени частоты вращения, возможность использования в системах отопления до 110 0С. Допустимые перекачиваемые жидкости - питьевая вода и вода для пищевых производств. Насос устойчив к коррозии. Мотор не требует дополнительной защиты [12].

Насос изготовлен из керамического вала и бронзового корпуса, рабочее колесо изготовлено из композитных материалов. Данные циркуляционного насоса Wilo TOP-S 30/10 EM для контура горячего водоснабжения получены из сайта http://www.pompa.kiev.ua/find_goods.php.

Основные технические характеристики насоса:

напор макс………………….………………..………………………..6 м.

расход макс…………..………………………….……………..5,5 м3/ч.

подключение к сети…..…………………………….1~230 В, 50 Гц

минимальный подпор во всасывающем патрубке……0,5 м при (+50°С)

температура жидкости в системах ГВС ……....до 65°С (2ч. до +70°С)

рабочее давление макс………………..……………………….. 10 бар

подсоединение к трубопроводу…..………………………….. Rp 3/4"

монтажная длинна……………….………………………………150 мм.

вес………………..……………………………………………... 2,3 кг.

2.2.2.5 Выбор шаровых кранов для контуров отопления и ГВС

Для подключения к теплосети систем отопления и горячего водоснабжения применяют специально предназначенную группу шаровых кранов типа JIP, обеспечивающих высокую степень безопасности. Они выполнены полностью из стального сварного корпуса и отвечают всем требованиям, которые предъявляют к современной арматуре. Краны снабжены уникальным уплотнением штока с применением фторопласта, что гарантирует герметичность и повышенную цикличность даже при высоких и изменяющихся температурах теплоносителя. В кране применена самообжимная конструкция шара за счет специальной пружины с двумя кольцами из армированного углеволокном фторопласта. Этим обеспечено герметичное запирание потока теплоносителя и оптимальное требуемое усилие для поворота шара. Краны выполняют под резьбовое, фланцевое, сварное или комбинированное присоединения (с одной стороны фланец или резьба, с другой - патрубок под сварку). Для этого используют специальные свёрла. Главная особенность такого крана, кроме применения термоустойчивых уплотнителей, состоит в недопущении какого либо негативного влияния температуры и давления теплоносителя на шар и уплотнители. Внешний вид и габаритные размеры шарового крана типа Х1666 приведены на рисунке 2.11. Технические характеристики шарового крана приведены в таблице 2.8.

Таблица 2.8 - Технические характеристики шарового крана типа Х1666

Параметры крана

Значения

Условный проход (Ду), мм.

50

Размер присоединительной резьбы (R), дюймы

2

Условное давление (Ру), бар

69

Темпераура перемещемой среды, 0С

минус 25 - 230

Условная пропускная способность (Kv), м3/ч

128,2

2.2.2.6 Выбор обратного клапана

Клапаны обратные предназначены для предотвращения движения перемещаемой по трубопроводам среды в обратном направлении. В таблице 2.9 приведены основные технические характеристики обратного клапана типа 402.

Таблица 2.9 - Технические характеристики обратного клапана типа 402

Технические параметры обратного клапана

Значения

Условный проход (Ду), мм.

50

Условное давление (Ру), бар

16

Темпераура перемещемой среды, 0С

минус 10 - 100

Условная пропускная способность (Kvs), м3/ч

99

Минимальное давление открытия клапана, мм.вод.ст.

440/110

Клапаны обратные состоят из:

- корпуса;

- золотника различного исполнения;

- направляющей;

- пружины;

- уплотнений золотника.

Клапаны обратные подразделяются по:

- материалу корпуса -- латунь, нержавеющая сталь или чугун (материал указан в заголовке технического описания конкретного клапана);

- типу золотника -- конический с направляющим штоком, тарельчатый;

- материалу золотника -- чугун (клапан типа 402), полиацетат (клапан типа EURA), латунь (клапан типа 223), нержавеющая сталь или чугун (клапан типа 802), нержавеющая сталь (клапан типа 812);

- параметрам перемещаемой среды;

- способу соединения с трубопроводом -- с внутренней резьбой (EURA), фланцевый (402), с наружной резьбой и дополнительно заказываемыми резьбовыми или приварными при соединительнымипатрубками с накидными гайками (223) и зажимаемый между двумя ответными фланцами (802, 812).

Все представленные клапаны обратные и закрываются под действием пружины, могут устанавливаться в любом положении.

Из обратных клапанов типов 402, и 802 и 812 можно удалить пружину. При этом давление открытия клапана значительно уменьшается. Клапаны обратные со снятой пружиной должны устанавливаться только на вертикальном трубопроводе при направлении движения перемещаемой среды «снизу-вверх». На рисунке 2.12 показаны внешний вид и габаритные размеры обратного клапана типа 402.

2.2.2.7 Фильтр сетчатый латунный, муфтовый со спускным краном типа Y222P

Фильтры сетчатые предназначены для установки перед регулирующей арматурой, расходомерами, насосами с «мокрым» ротором электродвигателя и другими устройствами с повышенными требованиями к чистоте проходящей через них воды.

Фильтры состоят из:

- корпуса;

- крышки со сливным отверстием;

- сетчатого цилиндра из нержавеющей стали;

- заглушки сливного отверстия или крана для спуска грязи;

- уплотнительной прокладки.

Фильтры подразделяются:

- по материалу корпуса и крышки -- латунь, чугун или нержавеющая сталь;

- по наличию заглушки или спускного крана;

- по способу соединения с трубопроводом -- муфтовый или фланцевый.

На рисунке 2.13 показан внешний вид сетчатого фильтра со спускным краном типа Y222P. Размеры приведены на рисунке 2.14.

Основные технические характеристики фильтра:

условный проход (Ду), мм………………………………………….....50

условное давление (Ру), бар………………………………………...…25

температура перемещемой среды, 0С……..……... от 0 оС до 110 оС

условная пропускная способность (Kvs), м3/ч………………...…46.8

размер ячейки сетки, мм…………………………………………....0,5

масса, кг……………………………………………………………1,29

3. Обоснование и выбор аппаратуры учета, контроля и регулирования

3.1 Технические требования и выбор аппаратуры учета теплопотребления зданием

Здания, присоединяемые к сетям централизованного теплоснабжения, должны быть оборудованы устройствами коммерческого учета потребляемой тепловой энергии, устанавливаемыми на абонентских вводах. Коммерческий учет теплопотребления осуществляют для определения стоимости тепловой энергии, израсходованной абонентом. Эту стоимость рассчитывают по показаниям прибора учета, называемого тепловычислителем.

Тепловычислитель определяет количество потребленной энергии за установленный период времени на основании массового расхода и разности энтальпий теплоносителя в подающем и обратном трубопроводах.

Для тепловых пунктов с расчетной тепловой нагрузкой менее 2,5 МВт (рисунок 3.1) установка расходомера на обратной магистрали строго не обусловлена, поэтому на схеме он выделен пунктирной линией. Однако большинство теплоснабжающих организаций требуют его установки, мотивируя необходимостью учета утечек теплоносителя [8].

Выбор средств аппаратуры учета тепловой энергии следует производить согласно правилам учета тепловой энергии и теплоносителя. Согласно пунктам с 5.1.5 по 5.1.10 настоящего нормативного документа, аппаратура учета должна соответствовать следующим требованиям:

- приборы узла учета должны быть защищены от несанкционированного вмешательства в их работу, нарушающего достоверный учет тепловой энергии, массы и регистрацию параметров теплоносителя;

- теплосчетчики и информационно - измерительные системы должны иметь возможность ввода энтальпии или температуры подпиточной воды на источнике тепла;

- теплосчетчики и информационно - измерительные системы должны автоматически проводить диагностику работоспособности приборов узла учета и, в случае появления неисправности любого прибора, фиксировать время нахождения в неисправности и выдавать сообщение на табло;

- теплосчетчики и информационно - измерительные системы должны иметь возможность архивирования почасовых значений основных параметров теплопотребления на период не менее 10 суток;

- теплосчетчики и информационно - измерительные системы должны иметь выход для подключения приборов регистрации на бумажном носителе.

- теплосчетчики и информационно - измерительные системы должны иметь стандартный выход для передачи информации на диспетчерские пункты энергоснабжающей организации [9].

Тепловычислитель СПТ 943.1 предназначен для измерения и учета тепловой энергии и количества теплоносителя в закрытых и открытых водяных системах теплоснабжения. Тепловычислитель рассчитан для работы в составе теплосчетчиков, обслуживающих два теплообменных контура (тепловых ввода), в каждом из которых могут быть установлены три датчика объема, три датчика температуры и два датчика давления. Совместно с тепловычислителем применяются:

Страницы: 1, 2, 3, 4


© 2010 Современные рефераты