Рефераты

Автоматизация теплового пункта гражданского здания

- преобразователи объема, имеющие числоимпульсный выходной

сигнал с частотой следования импульсов 0-18 или 0-1000 Гц;

- преобразователи температуры ТСП или ТСМ с R0=100 Ом и

W100={1,3850, 1,3910, 1,4280};

- преобразователи давления с выходным сигналом 4-20 мА.

Электропитание тепловычислителя осуществляется от литиевой батареи или от внешнего источника постоянного тока. Датчики объема, работающие при напряжении питания 3,2-3,6 В, могут получать его непосредственно от тепловычислителя. Тепловычислитель снабжен дискретным выходом для сигнализации о нарушении допустимых диапазонов измеряемых параметров и дискретным входом для фиксации внешнего события. Внешний вид тепловычислителя СПТ943.1 показан на рисунке 3.2. Классификационные параметры моделей тепловычислителей приведены в таблице 3.1, где приняты обозначения: ТВ1, ТВ2 - первый и второй тепловые вводы, V - датчик объема, t - датчик температуры, P - датчик давления.

Таблица 3.1 - Классификационные параметры тепловычислителей

Модель

Количество подключаемых датчиков

Питание датчиков объема

Дискоетный выход

Дискретный вход

ТВ1

ТВ2

V

t

P

V

t

P

СПТ943.1

3

3

2

3

3

2

+

+

+

Эксплуатационные характеристики:

Условия эксплуатации:

температура окружающего воздуха …….……… от минус 10 до 50 0С

относительная влажность ……………..……………. до 95 % при 35 0С

атмосферное давление …………………….………….. от 84 до 106,7 кПа

вибрация - амплитуда …………………….…….0,35 мм, частота 5-35 Гц

Механические параметры:

габаритные размеры ………………….………………...….208х206х87 мм

масса ……………………………………………….………не более 0,95 кг

степень защиты от пыли и воды……………………………………... IP54

Параметры электропитания:

литиевая батарея…………………………………….………………... 3,6 В

внешний источник постоянного тока……….… Uном=12 В, Iпот<15 мА

Показатели надежности:

средняя наработка на отказ…………….………………………. 75000 ч

средний срок службы …………………………………………….. 12 лет

Входные сигналы и диапазоны. Измерительная информация поступает на тепловычислитель от датчиков в виде электрических сигналов, перечень которых составляют: шесть числоимпульсных сигналов, соответствующих объему, каждый из которых может быть низкочастотным с диапазоном изменения 0-18 Гц или высокочастотным с диапазоном 0-1000 Гц. Низкочастотные сигналы формируются дискретным изменением сопротивления (замыкания-размыкания) выходной цепи датчика объема. Сопротивление цепи в состоянии "замкнуто" должно быть менее 1 кОм, в состоянии "разомкнуто" - более 500 кОм. Длительность импульса (состояние "замкнуто") должна составлять не менее 0,5 мс, паузы (состояние "разомкнуто") - не менее 12,5 мс. Высокочастотные сигналы формируются дискретным изменением напряжения выходной цепи датчика. Выходное сопротивление цепи не должно превышать 1 кОм. Низкий уровень сигнала (импульс) должен быть не более 0,5 В, высокий уровень (пауза) - не менее 3 и не более 5 В. Длительности импульса и паузы должны быть не менее 0,5 мс;

- четыре сигнала силы тока 4-20 мА, соответствующих давлению;

- шесть сигналов сопротивления, соответствующих температуре от минус 50 до 175 0С.

Кроме перечисленных, тепловычислитель воспринимает один дискретный сигнал, соответствующий внешнему событию (отключение питания датчиков, срабатывание охранной сигнализации и пр). Этот сигнал формируется внешним устройством в виде дискретного изменения напряжения. Высокий уровень сигнала должен лежать в диапазоне от 5 до 24 В, низкий уровень не должен превышать 1,0 В. Входное сопротивление тепловычислителя по дискретному входу составляет 4,7 кОм.

По результатам контроля входных сигналов, измеряемых и вычисляемых параметров тепловычислитель формирует выходной дискретный сигнал путем замыкания-размыкания выходной цепи. Он информирует о наличии каких-либо нарушений - нештатных ситуаций, выявленных при контроле, при этом факту нарушения соответствует замкнутое состояние цепи, которое поддерживается в течение всего времени, пока имеет место нарушение. Остаточное напряжение выходной цепи в состоянии "замкнуто" не превышает 2 В, ток утечки в состоянии "разомкнуто" - 0,01 мА. Предельно допустимые параметры коммутируемой нагрузки - 24 В, 200 мА постоянного тока.

Основные функциональные возможности:

- обслуживание двух независимых тепловых нагрузок, для каждой из которых может быть выбрана любая из двенадцати схем учета с тремя преобразователями расхода, двумя преобразователями давления и двумя или тремя преобразователями температуры;

- подключаемые датчики:

- шесть термопреобразователей сопротивления 100 П;

- четыре преобразователя давления с выходным сигналом 4-20 мА;

- шесть преобразователей расхода;

- возможность питания расходомеров, подобных SONO-2500СТ, непосредственно от тепловычислителя;

- архивирование средних и суммарных значений измеряемых и вычисляемых параметров с привязкой к расчетному дню и часу:

- ведение архивов изменений параметров настроечной базы данных и нештатных ситуаций;

- возможность измерения температуры холодной воды и температуры наружного воздуха;

- расширенная система диагностики - выбор алгоритмов обработки нештатных ситуаций;

- формирование двухпозиционного выходного сигнала по результатам диагностики;

- последовательный (RS232C-совместимый) и оптический (IEC1107) порты для обмена с внешними устройствами;

- работа с телефонными и GSM-модемами;

- считывание данных с помощью накопителя АДС90 и переносного компьютера;

- вывод отчетов на принтер (с помощью адаптера АПС45);

- скорость обмена 19200 бит/с;

- регистрация внешних событий (например пропадания напряжения питания расходомеров) с помощью специально предусмотренного дискретного входа;

- емкое табло - две строки по 20 символов, простой и удобный интерфейс пользователя, наглядные процедуры просмотра архивов.

Диапазоны показаний:

Пределы диапазонов показаний составляют:

- 0-1,6 МПа (0-16 кгс/см2, 0 -16 бар) - давление;

- минус 50 - 175 0С - температура;

- 0-175 0С - разность температур;

- 0-99999 м3/ч - расход;

- 0-99999999 - объем [м3], масса [т], тепловая энергия [Гкал, МВт];

- 0-99999999 ч. - время.

Корпус тепловычислителя выполнен из пластмассы, не поддерживающей горение. Стыковочные швы корпуса снабжены уплотнителями, что обеспечивает высокую степень защиты от проникновения пыли и воды. Внутри корпуса установлена печатная плата, на которой размещены все электронные компоненты, клавиатура, табло и оптический порт. Литиевая батарея расположена в отдельном отсеке и удерживается в корпусе специальной крышкой с помощью винтов. Такое расположение позволяет производить замену батарей непосредственно на месте установки прибора. На рисунке 3.3 показано расположение органов взаимодействия с оператором, соединителей для подключения внешних цепей.

Тепловычислитель крепится на ровной вертикальной плоскости с помощью четырех винтов. Корпус навешивается на два винта, при этом их головки фиксируются в пазах петель, расположенных в верхних углах задней стенки, и прижимается двумя винтами через отверстия в нижних углах. Монтажный отсек закрывается крышкой, в которой установлены кабельные вводы, обеспечивающие механическое крепление кабелей внешних цепей. Подключение цепей выполняется с помощью штекеров, снабженных винтовыми зажимами для соединения с проводниками кабелей. Сами штекеры фиксируются в гнездах, установленных на печатной плате. Конструкция крышки монтажного отсека позволяет не производить полный демонтаж электрических соединений, когда необходимо временно снять тепловычислитель с эксплуатации - достаточно лишь расчленить штекерные соединители.

Помесячный архив данных составляет 24 месяца.

Расходомеры SONO 2500 CT предназначены для измерения объемного расхода воды в системах тепло- и водоснабжения. Общий вид ультразвукового расходомера приведен на рисунке 3.4.

Расходомер SONO 2500 CT представляет собой единый блок, состоящий из корпуса с ультразвуковыми преобразователями, преобразователя сигналов, закрепленного на корпусе, и кабеля для подключения к тепловычислителю.

Для измерения расхода используется ультразвуковой принцип измерения.

Два ультразвуковых датчика, работающие и как передатчики, и как приемники, установлены на входе и на выходе расходомера.

Ультразвуковые сигналы передаются по прямой линии одновременно от двух датчиков.

Один сигнал идет по направлению потока воды, другой -- против. Поэтому сигналы от передатчиков не достигают своих соответствующих противоположных приемников одновременно. Чем большее количество воды протекает через расходомер, тем больше временная задержка между двумя сигналами. Встроенный в расходомер преобразователь сигналов преобразует время задержки в импульсный сигнал с частотой, пропорциональной фактическому расходу. Технические характеристики и габаритные размеры приведены в таблице 3.2.

Таблица 3.2 - Технические характеристики расходомера SONO 2500 CT

Параметры расходомера

Значения

Ду, мм.

40

Диапазон измерения, 0С

20-150 (при горизонтальном монтаже)

20-120 (при вертикальном монтаже)

Относительная погрешность измерения

±2% в диапазоне 0,02 Qmax - Q max

±5% в диапазоне 0,01 Qmax - 0.02Q max

Доступное давление, МПа

2,5

Потребляемая мощность, Вт

меньше 1

Напряжение питания, В

3,6±0,1

Макс. расход Qmax, м3/ч

20

Номин.расход Qmin, м3/ч

10

Q2%'', м3/ч

0,4

Q5% '', м3/ч

0,2

Порог чувствительности, л/ч

20

Цена импульса, имп/л

10

Диаметр d, мм.

110

Диаметр D, мм/Резьба G

148

Длина L, мм.

300

Масса, кг.

7,9

Ультразвуковые расходомеры обладают незначительным гидравлическим сопротивлением, не искажают расходные характеристики регулирующих клапанов и не влияют тем самым на управление объектом регулирования.

Комплекты термопреобразователей КТПТР-01 и КТПТР-03 предназначены для измерения температуры и разности температур в составе теплосчетчиков и других приборов учета и контроля тепловой энергии в тепловых сетях промышленных предприятий и теплоснабжающих организаций. Габаритные размеры термопреобразователей КТПТР-01 и КТПТР-03 и их электрическое соединение показаны на рисунке 3.5.

Технические характеристики термопреобразователей КТПТР:

диапазон измеряемых температур, 0С ……………………...от 0 до 180

диапазон разности температур, 0С…………………….…… от 0 до 180

НСХ по ГОСТ 6615-94 ……………100П, 500П, Рt 100, Рt 500, Рt 1000

класс доступа……………………………….………………………….. А

показатель тепловой инерции не более, с……………………….. 3 - 15

погрешность измерения температуры:

- для кл.1: дt=±(0.15+0.001Дt)

- для кл.2: дt=±(0.15+0.002Дt)

погрешность измерения разности температуры:

- для кл.1:дt(Дt)=±(0.05+0.001Дt)

- для кл.2: дt(Дt)=±(0.10+0.002Дt)

где Дt - разность температур.

степень защиты от пыли по ГОСТ 14254 …………….……………IP65

виброустойчивые и вибропрочные по группе №3 ГОСТ 12997-84

условное давление, МПа………………………….……….. от 0,4 до 6,3

температура окружающей среды, 0С ……………….…... минус 50 - 60

По условиям эксплуатации термопребразватели соответствуют условиям У, ТВ, категории 3 ГОСТ 15150-69. Защитная арматура изготовлена из стали 12Х18Н10Т. Головка термопреобразователя изготовлена из сополимера марки АБС-2020-32. Рекомендуемый измерительный ток для 100П, Рt 100 - 1,0 мА, 0,2мА для Рt 500, 500П и 0,1 мА для Рt 1000.

Перечисленные выше устройства имеют возможность работы в едином аппаратном комплексе узла учета теплопотребления. Ориентируясь на автоматизированную систему контроля и учета энергоснабжения потребителя (АСКУЭ) на базе тепловычислителя СПТ 943.1 можно создать узел для централизованной системы учета теплопотребления на любом уровне через глобальную сеть INTERNET или региональные компьютерные сети.

Поскольку тепловычислитель СПТ 943.1 имеет порты обмена данными (последовательный RS232C-совместимый и оптический IEC1107 порты), её можно подключить через кабельную сеть к диспетчерскому пункту управления и учета теплопотребления, теплоснабжающей организации. Такая организация системы учета теплоэнергии отбрасывает необходимость ручного сбора информации с каждого узла учета теплопотребления.

Данный комплект аппаратуры узла учета теплопотребления легка в эксплуатации, данные можно распечатать на бумажный носитель или архивировать. Применение аппаратуры узла учета в значительной мере снизит расходы теплоносителя и горячей воды, так как потребитель будет реально заинтересован в экономии личных финансовых затрат на тепловую энергию.

3.2 Выбор контрольно-измерительных приборов для технологических узлов теплового пункта

Показывающий термометр биметаллический для систем отопления и ГВС. По показаниям термометров определяют температуру теплоносителя, поступающей в систему отопления и горячего водоснабжения. Показывающий термометр биметаллический ТБ - 10 предназначен для измерения температуры различных веществ, не взаимодействующих с нержавеющей сталью. Основным измерительным элементом является биметаллическая спиральная пружина. Внешний вид термометра показан на рисунке 3.6.

Технические характеристики биметаллического термометра:

диаметр корпуса, мм…………………..…………………… 63, 100, 160

класс точности………………………………..………………………. 2,5

пределы измерения,оС……………………..……………... от -20 до 400

корпус………………………………………...……..сталь нержавеющая

длина штуцера (условная), мм…………...…………………50, 100, 160

Кран трёхходовой для манометра 11б18бк (КТН-1.6, КТК-15) предназначен для присоединения манометра к магистрали с рабочей средой и сброса давления при снятии манометра.

Технические параметры прибора:

рабочее давление:………………………………… 1,6 МПа (16кгс/см2)

рабочая среда:…………………….…….……………..вода, пар, воздух.

температура рабочей среды …………………...…………………200 °С

присоединение:…………………………………….. муфтовое, М20х1,5

материал корпуса:………………………………...……... латунь ЛЦ40С

масса.…………………………………………………….... не более 90 г.

Рабочее положение крана - любое. К трубопроводу кран присоединяется при помощи резьбовых муфт. Положение пробки устанавливается в зависимости от требуемого направления подачи рабочей среды. Корпус крана имеет две подсоединительные муфты и сливное отверстие, а пробка проход Т - образной формы, в связи, с чем поток рабочей среды в зависимости от положения пробки будет направляться в рабочий манометр из магистрали или производиться сброс давления на рабочем манометре при закрытой магистрали. Положение пробки определяется по Т - образной риске на торце пробки. Общий вид крана приведен на рисунке 3.7.

Манометры - измерительные приборы или измерительные установки для измерения давления или разности давлений.

Они содержат чувствительные элементы, которые упруго меняют свою форму под воздействием давления. Как правило, чувствительный элемент изготавливается из медных сплавов, легированных сталей или из специальных материалов. Давление измеряется по отношению к атмосферному давлению. Существует стандартный ряд измеряемых диапазонов, давление указывается стрелкой на циферблате. Технические манометры выпускаются таких конструкций, которые позволяют крепить их на щитах, панелях или непосредственно на импульсных линиях.

Надежный и экономичный манометр с трубчатой пружиной, модель 111.10 предназначен для измерения давления и разряжения неагрессивных, не кристаллизирующихся жидкостей, газа и пара. Диапазон измерения вплоть до 400 бар. Измерительным элементом до 40 бар является медный сплав круговой формы, больше 40 бар медный сплав винтовой формы. Имеется специальный вариант для закрытых отопительных систем.

Основные технические характеристики манометра:

наименование оборудования………….………………... Модель 111.10

диапазон показаний приборов в кгс/см2………….………….. от 0 до 4

класс точности……………………………………….………………...2,5

диаметр корпуса мм. ……………………………….………………...160

масса не более кг. ………………………………….………………...0,85

корпус ……………………………………………….………………сталь

Датчик температуры наружного воздуха ESMT, датчик температуры теплоносителя ESMU для систем отпления и ГВС

Датчик температуры - устройство в системе автоматического регулирования и контроля, воспринимающее через чувствительный элемент изменение контролируемой температуры воздуха или теплоносителя и осуществляющее ее функциональное преобразование во входной сигнал для электронного регулятора.

В состав датчика входит платиновый элемент, величина сопротивления которого изменяется пропорционально изменению температуры. Все датчики представляют собой устройства с платиновым элементом Pt 1000 Ом, который имеет линейную зависимость между электрическим сопротивлением и температурой измеряемой среды. При температуре 0 °С его сопротивление составляет 1000 Ом. С увеличением температуры сопротивление также увеличивается, на что соответствующе реагирует регулятор.

Все температурные датчики являются двухпроводными. Конструктивно выполнены под условия и параметры измеряемой среды. Так, ESMT предназначен для измерения температуры наружного воздуха; ESM-10 - внутреннего воздуха; ESMU - жидкости; ESM-11 и ESMC - поверхности, например, трубопровода.

Датчики серии ЕSМ предназначены, главным образом, для использования в системах кондиционирования воздуха и комфортных системах, для которых большое значение имеет конструкция корпуса датчика. Электрическое соединение и график изменения сопротивления датчика от изменения температуры наружной среды приведены на рисунке 3.8. Основные технические характеристики погружного и наружного датчиков приведены в таблице 3.3.

Для регулирования температуры воздуха в помещении в соответствии с заданным потребителем тепловым режимом - постоянным комфортным, пониженным, переменным (понижение в выходные дни, ночное понижение...) - применяют комнатные регуляторы ЕСА (рисунок 3.9).

Они воспринимают температуру воздуха в помещении со встроенного датчика температуры, сопоставляют ее с заданным тепловым режимом и передают сигнал на электронный регулятор в тепловом пункте.

Таблица 3.3 - Технические характеристики датчиков

Наименование

Pt1000 датчик наружной температуры

Pt1000 погружной датчик 100мм., медь

Тмин, 0С

минус 50

0

Тмакс. 0С

50

140

Постоянная времени, с

900

2 (в воде)

7 (в воздухе)

Корпус

IP54

Материал

поликарбонат

Медь, латунь, полиамид

Электрическое соединение

Две винтовые клеммы под крышкой

Две клеммы, кабельный ввод PG9

Установка

настенная

G1/2A и прокладка

В зависимости от модели, таким комнатным регулятором можно корректировать параметры настройки электронного регулятора теплового пункта. Все настройки отображаются на дисплее. Кроме того, на нем может быть отражено текущее время, температура наружного воздуха, наибольшее значение температуры наружного воздуха за ночь и многое другое.

3.3 Цифровой регулятор теплопотребления здания

Для автоматического регулирования теплопотребления здания, в автоматизированном тепловом пункте требуется установка электронного регулятора, который в автоматическом режиме ведет контроль и регулирование параметров теплоносителя.

Для этой цели выбирается электронный регулятор «ECL Comfort» 300 (рисунок 3.10). Электронный регулятор «ECL Comfort» 300 - устройство, которое воспринимает сигналы от всевозможных датчиков (температуры наружного воздуха, внутреннего воздуха, теплоносителя, горячей воды и т. д.), обрабатывает и формирует на их основании сигнал, передаваемый исполнительному механизму. Он имеет тиристорные выходы для управления регулирующими клапанами и релейные выходы для управления насосами либо запорными клапанами. Кроме того, у них могут быть расширены характеристики входов и выходов путем добавления аналоговых и релейных модулей.

«ECL Comfort» 300 -- электронный регулятор температуры, который настраивается для работы в различных технологических схемах систем теплоснабжения зданий с помощью управляющих карт. К регулятору возможно подключение до шести температурных датчиков градуировки «Pt 1000», дистанционных панелей контроля и управления, дополнительного релейного и коммуникационных модулей. Корпус регулятора «ECL Comfort 300» разработан для настенного монтажа, для установки в вырезе щита управления или на DIN-рейке. Регулятор «ECL Comfort» 300 имеет встроенный коммуникационный модуль RS232 с разъемом на передней панели.

Регуляторы «ECL Comfort» 300 может быть переключен на различные прикладные задачи с помощью управляющих карт типа C и L. Каждая карта обеспечивает функционирование регулятора применительно к конкретной схеме теплоснабжения. Выбор карты и специфических настроек регулятора определяется требованиями схемы теплоснабжения.

Основные технические характеристики электронного регулятора «ECL»:

напряжение питания………………...……………………... 230 В, 50 Гц

количество релейных выходов…………………………...……………. 3

количество входов для подключаемых датчиков……………...……....6

мин. напряжение питания……………………………….……..…. 207 В

макс. напряжение питания……………………………….……..… 244 В

потребляемая мощность……………………………….….….…….. 5 Вт

нагрузка на релейных выходах……...…………….… 4 (2) A / 250 В п.т.

нагрузка на тиристорных выходах……………...…….….… 0,2 А/ 250 В

Тмин окр. среды………………………………………..…….…….. 0 °C

Тмакс окр. среды………………………………………….….…… 50 °C

Т мин хранения и транспортировки……………………..…. минус 40 °C

Тмакс хранения и транспортировки…………………….……….…. 70 °C

резервный источник питания для таймера………..…….………… 12 ч.

точность таймера…………………………….………...... +/- 25 мин/год

3-позиционное регулирование привода…………..…………………... 2

тип датчика температуры………………..………….….. Pt 1000 Ом/°C

класс защиты корпуса…………………...……………. IP 41 DIN 40050

макс. длина кабеля датчика…………………………….....………. 120 м

Управляющая карта «C66» предназначена для обеспечения работы электронного регулятора «ECL Comfort 300» в технологической схеме с закрытой системой теплоснабжения и при зависимом присоединении системы отопления. Регулятор с картой «С66», поддерживает температуру теплоносителя, поступающего в систему отопления в зависимости от температуры наружного воздуха в соответствии с установленным температурным графиком, а также постоянную температуру горячей воды в системе горячего водоснабжения. Регулятор, настроенный на работу с картой «С66» кроме функций регулирования, позволяет:

- осуществлять управление системой отопления с коррекцией по температуре воздуха в помещении (при установке комнатного датчика);

- обеспечивать недопустимое превышение заданного температурным графиком значения температуры теплоносителя, возвращаемого в теплосеть после контура отопления, и постоянного значения после контура ГВС;

- программировать снижение температуры воздуха в помещении и горячей воды в системе ГВС по часам суток и дням недели;

- производить форсированный натоп помещений после периода снижения температуры внутреннего воздуха;

- автоматически отключать систему отопления на летний период при переходе температуры наружного воздуха определенной границы;

- периодически включать электроприводы насоса и регулирующего клапана во время летнего отключения систем отопления;

- защищать систему отопления от замораживания.

С помощью карты «С66» возможна настройка ряда параметров регулирования и выполнение самонастройки регулирования системы ГВС. В качестве температурных датчиков в схемах регулирования используются термометры сопротивления типа Pt 1000. Регуляторы могут объединяться через шину «BUS» в единую систему с одним датчиком наружного воздуха. При этом регулятор, к которому подключен датчик, является ведущим. С помощью шины «BUS» также возможно подключение к регулятору комнатной панели контроля и настройки температуры внутреннего воздуха типа «ЕСА 60» или выносного блока дистанционного управления «ЕСА 61».

Принцип регулирования.

Пропорционально-интегральное регулирование температуры теплоносителя, поступающего в систему отопления, в зависимости от температуры наружного воздуха с коррекцией по температуре внутреннего воздуха с отслеживанием по температурному графику температуры теплоносителя, возвращаемого на источник теплоты.

Пропорционально-интегральное регулирование температуры горячей воды с отслеживанием температуры теплоносителя, возвращаемого на источник теплоты. Температура теплоносителя и горячей воды поддерживается с помощью клапанов с электроприводами через тиристорные выходы. Циркуляционные насосы систем отопления и горячего водоснабжения управляются с помощью реле. Электрические цепи соединения электронного регулятора с технологическими оборудованиями показаны на рисунке 3.11. Пояснения к клеммам электронного регулятора приведены в таблицах 3.4. и 3.5.

Применение вышеуказанного электронного регулятора предоставляет ощутимые эффекты, такие как повышение комфортных условий отапливаемого помещения, увеличение и снижение подачи теплоносителя в систему отопления в соответствии с температурой наружного воздуха. А также снижает расход тепловой энергии, потребляемый зданием. Установка электронного регулятора «ECL Comfort» 300 также существенно облегчает работу рабочего персонала теплового пункта.

Питание электронных регуляторов осуществляют от сети переменного тока 220 В или 24 В. Они имеют встроенные аккумулятор для поддержки работы часов при отсутствии основного питания.

Электронным регулятором реализуют эффективное управление инженерными системами здания с максимальным энергосбережением.

Таблица 3.4 - Описания клемм регулятора «ECL Comfort 300» с картой «C66»

Клемма

Описание

Макс. нагрузка

1 L

Напряжения питания 230В (фаза)

-

2 N

Напряжения питания 230 В (нейтраль)

-

3 М1

Электропривод контура отопления (открытие)

0,2 А, 230 В

4 М1

Электропривод контура отопления

0,2 А, 230 В

5

Фаза 230В для М1

-

6 М2

Электропривод контура ГВС (открытие)

0,2 А, 230 В

7 М2

Электропривод контура ГВС (закрытие)

0,2 А, 230 В

8

Фаза 230 В для М2

-

9 Р1

Циркуляционный насос контура отопления

4(2) А, 230 В

10

Фаза 230 В для реле насоса R1

-

12 Р3

Циркуляционный насос контура ГВС

4(2) А, 230 В

13

Фаза 230В для реле насоса R3

-

Таблица 3.5 - Описания клемм для соединения термосопротивлении

Клемма

Описание

Тип датчика

15 и 16

Шина системного устройства

-

17 и 16

Датчик температуры наружного воздуха S1

ESMT

18 и 16

Датчик температуры воздуха в помещении S2

ESM-10

19 и 16

Датчик температуры теплоносителя в подающем трубопроводе S3 контура 1

ESM-11, ESMB, ESMC, ESMU

20 и 16

Датчик температуры теплоносителя S4 возвращаемого в тепловую сеть после двух контуров

ESM-11, ESMC, ESMU

21 и 16

Датчик температуры теплоносителя в подающем трубопроводе S5 контура II

ESM-11, ESMC, ESMU

22 и 16

Датчик температуры воздуха в помещении S6 для контура II

ESM-10

Контроллер ECL Comfort 300 имеет встроенный трехпроводный интерфейс RS232, поддерживающий фирменный протокол Danfoss и реализующий операции записи и чтения данных контроллера. Этот интерфейс выведен на лицевую панель прибора в виде шестиконтактной розетки RJ12 и закрыт снимающейся крышкой. Схема кабеля для подключения к этому интерфейсу приводится в вышеназванном каталоге. Кроме этого, контроллер ECL Comfort 300 может укомплектовываться дополнительными модулями связи, которые устанавливаются на разъеме платы контроллера, не выходя за его габариты. Эти модули позволяют расширить коммуникационные возможности контроллеров.

Модуль архивации данных и интерфейса RS232.

Модуль имеет встроенную энергонезависимую память, позволяющую хранить большой объем данных. При конфигурации задаются параметры контроллера и периоды их опроса, подлежащие регистрации. Таким образом, имеется возможность сохранять историю изменения выбранных параметров. Кроме этого, модуль имеет трехпроводный интерфейс RS232 и функцию инициализации внешнего модема. Это обеспечивает удаленный доступ к контроллеру по проводным или сотовым телефонным каналам.

Модуль интерфейса LON типа ЕСА82 обеспечивает подключение контроллера ECL Comfort 300 к двухпроводной сети LON FTT-10A. Через него можно производить операции чтения и записи данных. Данный интерфейс поддерживает шинную архитектуру сегмента сети с длиной шины до 2700 м и сеть произвольной конфигурации с общей длиной шины до 500 м. Одновременно на один сегмент сети через ответвления можно подключить большое количество приборов различного назначения от разных производителей. Конфигурирование и поддержка сети требует дорогостоящих и сложных в применении программных и аппаратных компонентов, в связи с чем создание такой сети на объекте должно инициироваться квалифицированным системным интегратором.

Модуль интерфейса RS485 с протоколом Modbus RTU. Модуль дает возможность подключать контроллер ECL Comfort 300 к двухпроводной шине для обмена данными по протоколу Modbus-RTU. Число контроллеров в одном сегменте доходит до 32. Сеть может иметь только линейную конфигурацию с номинальной длиной сегмента до 1,2 км. Назначение сетевого адреса контроллера производится с помощью специального программного инструмента. Номинальные скорости обмена -- 19,2 и 38,4 кбит/с. Для чтения и записи данных используются стандартные команды Modbus 3, 4 и 6. На рисунке 3.12 изображена система SCADA, подключенная к ОРС-серверу Mod-bus или стандартный канал Mod-bus SCADA-системы

4. Охрана труда

В настоящее время действует трудовой кодекс Республики Казахстан от 15 мая 2007 года. Согласно статье 321 настоящего трудового кодекса Республики Казахстан требования безопасности рабочих мест состоят из следующих пунктов.

1 Здания (сооружения), в которых размещаются рабочие места, по своему строению должны соответствовать их функциональному назначению и требованиям безопасности и охраны труда.

2 Рабочее оборудование должно соответствовать нормам безопасности, установленным для данного вида оборудования, иметь соответствующие знаки предупреждения и обеспечиваться ограждениями или защитными устройствами для обеспечения безопасности работников на рабочих местах.

Страницы: 1, 2, 3, 4


© 2010 Современные рефераты