Стоимость оборудования согласно УПСС (Москва, 1986), Технические данныетрансформаторов согласно (14).
Произведем пересчет с учетом нынешних цен:
Общие капиталовложения (замена трансформаторов) состоят из монтажных работ и стоимости оборудоания:
(для 2-х трансформаторов)
(для 2-х трансформаторов)
Проверим возможность перегрузки намеченных трансформаторов при выходе одного из них из строя и выходе из строя ввода №1:
1,4H40000 (56000) > 47730
1.4H31500 (44100) < 47730 однако, приняв общую мощность потребителей 3 категории 20% от общей, при отключении данных потребителей трансформатор проходит условие аварийной перегрузки:
47730H0,8 = 38160 < 44100
Определим экономически целесообразный режим работы трансформаторов на основании технико-экономических данных, приведенных в таблице 2. В расчетах принимаем Ки.п.= 0,07 кВт/кВАр.
Потери мощности в трансформаторах составят:
Найдем нагрузку, при которой целесообразно переходить на параллельную работу трансформаторов:
1 вариант:
2 вариант:
При некруглосуточной работе завода с нагрузкой потери энергии в обоих трансформаторах составят
К1 =4504 тыс. руб. (капиталовложения даны для 2-х трансформаторов)
Амортизационные отчисления:
Cа1 = 0,063HК1 = 283,75 тыс. руб.
Стоимость годовых потерь электроэнергии при С0п = 0,65 руб./(кВтч):
?Сп1 = 0,65H4,104H10 6=2668 тыс. руб.
Суммарные эксплуатационные расходы:
Сэ1 = 283,75 + 2668 = 2952 тыс. руб.
Второй вариант:
К2 =4251 тыс. руб. (капиталовложения даны для 2-х трансформаторов)
Амортизационные отчисления:
Cа2 = 0,063HК1 = 267,81 тыс. руб.
Стоимость годовых потерь электроэнергии при С0п = 0,65 руб./(кВтч):
?Сп2 = 0,65H3,619H10 6=2352 тыс. руб.
Суммарные эксплуатационные расходы:
Сэ2 = 267,81 + 2352 = 2620 тыс. руб.
Определения срока окупаемости в данном случае не требуется и экономически выгодным становится применение трансформаторов мощностью 32000 (31500) кВА, так как капитальные и эксплуатационные затраты оказались во втором случае меньше. Однако по техническим условиям вариант с трансформаторами 40000 кВА более целесообразен, так как трансформаторы мощностью 32000 кВА на сегодняшний день практически не применяются и сняты с производства; авторы многих книг и справочников по проектированию не рекомендуют применять такие трансформаторы. Ответ на вопрос о шкале номинальных мощностей трансформаторов неоднозначен. Наш расчет показал экономическую целесообразность использования трансформатора мощностью 32000 кВА. В книге (3) демонстрируются преимущества старой шкалы 1,35 в отличие от 1,6 (введена в 1961 г.).
При наличии соответствующей информации завода-изготовителя можно принять к рассмотрению трансформаторы мощностью 32 МВА.
Устанавливаем на подстанции два трансформатора:
ТДН - 32000/110.
Для подстанции №1 (при условии роста 8500 кВт) можно установить трансформаторы такого же типа.
В настоящее время на практике редко встречаются случаи применения двухобмоточных трансформаторов, основное применение находят трехобмоточные трансформаторы или трансформаторы с расщепленной обмоткой.
Поэтому примем к рассмотрению вариант с установкой трансформаторов с расщепленной обмоткой типов:
Тип
Номинальная
мощность
Номинальное
напряжение
Потери, кВ
Напряжение
К.З
Ток
хх
Стоимость, тыс. руб
ВН
НН
хх
Кз
Строит.
работы
Монтаж
Обор
Общ
ТРДН-32000/110
32000
115
6,3-6,3
32
145
ВН-НН 10,5
НН - НН 15
0,7
96,54
31
391,43
-
ТРДН -40000/110
40000
115
6,3-6,3
42
175
ВН-НН 20
НН - НН 30
0,65
96,54
31
424,32
-
Стоимость оборудования увеличивается пропорционально данным стоимости трансформаторов, коэффициент роста равен примерно 1,3.
Определим потери мощности
1 вариант
2 вариант
1 вариант
2 вариант
Определим приведенные потери короткого замыкания:
1 вариант
2 вариант
Потери электроэнергии в трансформаторе составят (в расчетах составляющую потерь на охлаждение не учитываем ввиду отсутствия в справочных материалах, поэтому в действительности потери в трансформаторе будут примерно на 5% больше расчетных)
Стоимость годовых потерь электроэнергии при С0п = 0,65 руб./(кВтч):
?Сп1 = 0,65H1,259H10 6=818,35 тыс. руб.
Суммарные эксплуатационные расходы:
Сэ1 = 348,138 + 818,35 = 1166 тыс. руб.
2 вариант
Амортизационные отчисления:
Cа2 = 0,063HК2 = 368,865 тыс. руб.
Стоимость годовых потерь электроэнергии при С0п = 0,65 руб./(кВтч):
?Сп2 = 0,65H2,331•10 6=1515 тыс. руб.
Суммарные эксплуатационные расходы:
Сэ2 = 368,865 + 1515= 1884 тыс. руб.
В данном случае определения нормативного срока также не требуется, принимаем первый вариант с установкой трансформаторов 32000 кВА.
Определим нормативный срок окупаемости для сравнения трансформаторов ТДН и ТРДН:
Таким образом, установка трансформатора ТРДН - 32000/110 выгоднее установки ТДН.
1.6Выбор схемы и конструкции распределительного устройства (6-10 кВ)
Характерной особенностью схем внутризаводского рас-пределения электроэнергии является большая разветвленность сети и наличие большого количества коммутационно-защитной аппаратуры, что оказывает значительное влияние на технико-экономические показатели и на надежность си-стемы электроснабжения.
С целью создания рациональной схемы распределения электроэнергии требуется всесторонний учет многих факторов, таких как конструктивное исполнение сетевых узлов схемы, способ канализации электроэнергии, токи КЗ при разных вариантах и др.
При проектировании схемы важное значение приобре-тает правильное решение вопросов питания силовых и ос-ветительных нагрузок в ночное время, в выходные и празд-ничные дни. Для взаимного резервирования рекомендуется использовать шинные и кабельные перемычки между бли-жайшими подстанциями, а также между концами сетей низшего напряжения, питаемых от разных трансформа-торов.
В общем случае схемы внутризаводского распределения электроэнергии имеют ступенчатое построение. Считается нецелесообразным применение схем с числом ступеней более двух-трех, так как в этом случае усложняется комму-тация и защита сети. На небольших по мощности пред-приятиях рекомендуется применять одноступенчатые схемы.
Схема распределения электроэнергии должна быть свя-зана с технологической схемой объекта. Питание приемников электроэнергии разных параллельных технологических потоков должно осуществляться от разных источников: подстанций, РП, разных секций шин одной подстанции. Это необходимо для того, чтобы при аварии не останавливались оба технологических потока.
В то же время взаимосвязанные технологические агрегаты должны присоединяться к одному источнику питания, чтобы при исчезновении пита-ния все приемники электроэнергии были одновременно обесточены.
При построении общей схемы внутризаводского электроснабжения необходимо принимать варианты, обеспечивающие рациональное использование ячеек распределительных устройств, минимальную длину распределительной сети, максимум экономии коммутационно-защитной аппаратуры.
Внутризаводское распределение электроэнергии выполняют по магистральной, радиальной или смешанной схеме. Выбор схемы определяется категорией надежности потребителей электроэнергии, их территориальным размещением, особенностями режимов работы.
Радиальными схемами являются такие, в которых элек-троэнергия от источника питания передается непосредст-венно к приемному пункту. Чаще применяют радиальные схемы с числом ступеней не более двух.
Одноступенчатые радиальные схемы применяют на небольших и средних по мощности предприятиях для питания сосредоточенных потребителей (насосные станции, печи, преобразовательные установки, цеховые подстанции), рас-положенных в различных направлениях от центра питания. Радиальные схемы обеспечивают глубокое секционирова-ние всей системы электроснабжения, начиная от источников питания и кончая сборными шинами до 1 кВ цеховых под-станций. Питание крупных подстанций и подстанций или РП с преобладанием потребителей I категории осуществляют не менее чем двумя радиальными линиями, отходящими от разных секций источника питания.
Двухступенчатые радиальные схемы с про-межуточными РП применяют на больших и средних по мощности предприятиях для питания через РП крупных пунктов потребления электроэнергии, так как нецелесообразно загружать основной центр питания предприятия с дорогими ячейками РУ большим количеством мелких отходящих линий. От вторичных РП питание подается на цехо-вые подстанции без сборных шин высшего напряжения. В этом случае используют глухое присоединение трансформаторов или предусматривают выключатель нагрузки, реже - разъединитель. Коммутационно-защитную аппаратуру при этом устанавливают на РП.
Магистральные схемы распределения электроэнергии применяют в том случае, когда потребителей много и ра-диальные схемы нецелесообразны. Основное преимущество магистральной схемы заключается в сокращении звеньев коммутации. Магистральные схемы целесообразно применять при расположении подстанции на территории предприятия, близкому к линейному, что способствует прямому прохождению магистралей от источника питания до потребителей и тем самым сокращению длины магистрали.
Недостатком магистральных схем является более низкая надежность по сравнению с радиальными схемами, так как исключается возможность резервирования на низшем напряжении на низком напряжении трансформаторных подстанций. Рекомендуется питать от одной магистрали не более двух - трех трансформаторов мощностью 2500- 1000 кВА и не более четырех-пяти при мощности 630-250 кВА.
На рассматриваемом предприятии потребители в основном относятся ко 2-3 категории, с преимущественным преобладанием второй.
Следовательно, схема питания по одиночной магистрали нецелесообразна.
Поэтому выбор осуществлялся между радиальной и схемой с двумя сквозными магистралями.
В силу того, что неизвестно точное расположение корпусов, а также количество заданных потребителей относительно небольшое, решающее преимущество получила радиальная схема.
В практике проектирования и эксплуатации редко применяют схемы внутризаводского распределения электроэнергии, построенные только по радиальному или только по магистральному принципу. Сочетание преимуществ тех и иных схем позволяет создать систему электроснабжения с наилучшими технико-экономическими показателями.
Для РУ 6, 10 и 35 кВ широко используют схему с одной секционированной системой шин. Число секций зависит от числа подключений и принятой схемы внутризаводского распределения электроэнергии.
В большинстве случаев число секций не превышает двух. Каждая секция работает раздельно и получает питание от отдельной линии или трансформатора. В нормальном режиме работы секционный аппарат (разъединитель или выключатель) отключен.
Применение секционного выключателя обеспечивает ав-томатическое включение резерва (АВР), что позволяет использовать такую схему для потребителей любой категории по надежности.
Для устройства РУ 6-10 кВ используют комплектные распределительные устройства (КРУ) двух исполнений: выкатные и стационарные (типов КСО и др.). КРУ состоит из закрытых шкафов со встроенными в них аппаратами, измерительными, защитными приборами и вспомогательными устройствами.
Шкафы КРУ изготовляют на заводах, и с полностью собранным и готовым к работе оборудованием они поступают на место монтажа. Здесь шкафы устанавливают, соединяют сборные шины на стыках шкафов, подводят силовые и контрольные кабели.
Выкатные КРУ рекомендуется применять для наиболее ответственных электроустановок с большим числом камер (15-20), где требуется быстрая замена выключателя. Для ремонта и ревизии выключателя его выкатывают с помо-щью тележки, на которой он установлен, и заменяют другим.
Для открытой установки вне помещения выпускают комплектные распределительные устройства серии КРУН. Шкафы этих устройств имеют уплотнения, обеспечивающие защиту аппаратуры от загрязнений, однако они не предна-значены для работы в среде, опасной в отношении пожара и взрыва, а также в среде с химически активными газами, токопроводящей пылью и влажностью воздуха более 80 %. КРУН выполняют со стационарной установкой выключателя или с выключателем выкатного исполнения. Так же, как КРУ, они разработаны для схемы с одной системой шин.
Простое исполнение и невысокая стоимость камер КСО создают им преимущества по сравнению с более дорогими камерами серии КРУ. Поэтому их целесообразно применять на подстанциях небольшой и средней мощности.
В задание на проектирование входит реконструкция распредустройства КСО, следовательно, работа будет вестись в направлении замены камер КСО.
Магистральная схема питания в нашем случае невыгодна по соображениям надежности. Двойные сквозные магистрали использовать в данном случае также нецелесообразно, так как при отключении головного выключателя вторая магистраль теряет питание, приходится переходить на работу с одной магистралью. Учитывая большую мощность трансформаторов, данный переход может привести к аварийной ситуации (к одной магистрали можно подключить 2-3 трансформатора мощностью 1600 кВА).
Итак, окончательный выбор сводится к использованию радиальной схемы с 3КТП и РУ-6 кВ с камерами КСО.
Фактически при выборе трансформаторов пришлось руководствоваться удельной нагрузкой предприятия, но в данных условиях это является наиболее целесообразным шагом. Поэтому выбор мощности трансформаторов КТП 1600 кВА является на этапе учебного проектирования оптимальным вариантом.
1.7.Выбор токоведущих частей и расчет токов короткого замыкания
Выбор кабелей от ЗРУ подстанции до проектируемого распределительного устройства 6 кВ.
Выбираем кабель для прокладки в земле марки ААПл - кабель с алюминиевыми жилами, с бумажной изоляцией, пропитанной вязким (нестекающим) составом, бронированный круглыми стальными оцинкованными проволоками (защитный покров типа Пл)
Расчетная мощность проектируемого распредустройства с учетом коэффициента разновременности составляет:
Pрасч = 5549 кВт; Qрасч = 4462 кВАр.
С учетом компенсации:
В задании на проектирование указаны максимальный и минимальный токи короткого замыкания. По максимальному току производится проверка электротехнического оборудования на электродинамическое и термическое действие, по минимальному - работоспособность релейной защиты и автоматики.
Так как расчет релейной защиты и автоматики не входит в задание, расчетный ток короткого замыкания на шинах распредустройства подстанции примем 8,5 кА. Будем считать ЭДС источника постоянной. Тогда действующее значение сверхпереходного тока короткого замыкания будет равно действующему значению установившегося тока короткого замыкания, то есть:
Определим приведенное время короткого замыкания, для этого примем время действиязащиты 1,2 с (линия от ПС до РУ -6 кВ).
1. Определим сечение линии по нагреву:
Выбираем сечение кабеля 185 мм 2 (предварительный расчет показал, что кабель сечением 150 мм2 не пройдет по условиям прокладки 2-х кабелей при условии выбора 2-х кабелей, проложенных в одной траншее), однако токовая нагрузка такого кабеля составляет всего 340 А, следовательно, необходимо использовать 2 кабеля, так как в этом случае токовая нагрузка уменьшается в 2 раза.
Коэффициент К1учитывает аварийную перегрузку (коэффициент предварительной загрузки был равен (280,4/340) ?0,8, по таблицам ПУЭ находим коэффициент 1,2 при продолжительности максимума 6ч), К2 учитывает количество прокладываемых кабелей в земле (в нашем случае 2 кабеля по таблицам ПУЭ находим коэффициент 0,9 при расстоянии в свету 100мм между ними).
Итак, 340 А > 259,63 А.
Следовательно, выбираем кабель ААШВ2(3g185);
2. По термическому действию тока короткого замыкания.
Определяем действительное время короткого замыкания:
Определим периодическую составляющую для приведенного времени тока короткого замыкания:
для , так как действительное время К.З. больше 1 с, то определения апериодической составляющей не требуется.
Таким образом, сечение кабеля, выбранного по нагреву, удовлетворяет условию нагрева током короткого замыкания.
Отметим тот факт, что определение термической устойчивости определялось по току короткого замыкания на шинах подстанции, что является некоторым допущением. Однако найденное значение тока короткого замыкания на шинах РУ -6 кВ не приведет к противоречию между выбором сечения, так как ток в этом случае получится несколько ниже.
3.Определим сечение кабеля по экономической плотности тока:
Продолжительность использования максимальной нагрузки в нашем случае составляет 4000 ч.
По таблице справочника (13) определяем экономическую плотность тока:
j = 1,4;
2 в знаменателе указывает на то, что режим работы сети нормальный, работают два источника питания параллельно. Однако, приняв сечение без учета аварийной ситуации (отключение одного из вводов), кабель будет нести уже двойную нагрузку, то есть перегрузка составит 100%, что недопустимо, так как в этом случае предприятие полностью теряет питание - отключен один из вводов и выведен из строя кабель второго источника. Таким образом, вести расчет без учета аварийной ситуации становится неоправданным, так как при этом нарушаются начальные условия надежности, поэтому расчет велся на одну нить двухкабельного проводника (при желании можно было рассматривать 2 нити, результаты расчета в этом случае не отличаются от вышеприведенных).
Следовательно, сечение кабеля по экономической плотности тока составит 200 мм2.Стандартное ближайшее сечение составляет 185 мм 2.
Определим потери напряжения в двухниточной кабельной линии в нормальном режиме:
Длина кабельной линии принята 2 км. Очевидно, что потери в кабельной линии длиной 1, 76 км будут меньше, поэтому расчет потери напряжения не производим.
Отклонение (снижение) напряжения, таким образом, составит приблизительно 3%- результат удовлетворительный, так как нормированное отклонение(снижение) напряжения составляет 5%.
По механической прочности кабели выбираются исходя из того, что минимальное значение сечения в таблице уже является механически стойким, следовательно, сечение 185 мм 2 является механически стойким.
По короне кабельные линии 6-10 кВ не проверяются ввиду отсутствия этого явления.
Итак, выбираем кабель, связывающий распределительное устройство подстанции и распределительное устройство проектируемого предприятия, для первого и второго источников питания:
Кабель ААПл 2(3g185)-6 (АО «ВНИИКП», Россия).
Дальнейшие расчеты по выбору токоведущих частей будут вестись параллельно с расчетом токов короткого замыкания.
Выбираем кабельную линию от проектируемого распределительного устройства доКТП №1:
Суммарная расчетная мощность КТП №1 составляет:
Sp = 2239,9 кВА.
При этом на шинах НН подстанции установлены две ККУ с суммарной мощностью 804 кВАр.
Определяем сечение линии по нагреву:
Выбираем кабель той же марки, но уже для прокладки в воздухе.
ААШв 3g150-6. Допустимый ток 225 А.
В данном случае введения поправочных коэффициентов не требуется
для этого необходимо составить схему замещения, рассматриваемого случая:
Рисунок 1
На рисунке 1 изображена схема замещения для расчета токов короткого замыкания сети выше 1 кВ. Точки короткого замыкания определены соответственно на шинах РУ - 6 кВ, а также у выводов обмоток высшего напряжения у трансформаторов КТП (ввиду однотипности кабельных линий к КТП выбрано 3 точки короткого замыкания, так как расчет для параллельно работающих кабелей будет однотипным). Длины кабельных линий выбраны условно по причине отсутствия генплана предприятия.
Считаем, что ЭДС источников питания неизменны. Здесь необходимо отметить, что ничего общего нет между нахождением сопротивления системы бесконечной мощности, которая приравнивается к нулю в сетях высшего напряжения, когда источник короткого замыкания приближен к месту короткого замыкания и нахождением сопротивления по заданному току короткого замыкания на шинах подстанции. В нашем случае ток задан для шин подстанции, в этом случае отклонение периодической составляющей тока короткого замыкания от начального значения не превышает 10%.
В задании на проектирование не указаны типы выключателей на подстанциях, питающих РУ -6 кВ. Кроме того, не задано начальное значение сверхпереходного тока короткого замыкания. Учитывая то, что в сетях промышленных предприятиях обычно периодическая составляющая считается неизменной, то . Следовательно, по этим данным можно приблизительно оценить мощность питающей системы. Определим x*расч для турбогенераторов:
x*расч = 0,6 (по таблицам справочников).
Учитывая тот факт, что сверхпереходные значения токов короткого замыкания для двух источников одинаковы, следовательно, и мощности питающих систем одинаковы. Очевидно, что источники работают параллельно при отключенных секционных разъединителяхРазъединители (секционные выключатели) могут находиться во включенном состоянии в аварийных режимах или при мощностях, которые целесообразны для работы одного трансформатора (источника питания) (см. выше)., следовательно, будем рассматривать работу двух источников раздельно.
Определим ток короткого замыкания в точке К1:
Определяем сопротивление системы:
За значение базисной мощности в электроустановках напряжением выше 1 кВ рекомендуется принимать Sб = 10000 МВА.
Uб = 6,3 кВ.
Определяем базисный ток:
Кабельная линия от ЗРУ подстанции до проектируемого распредустройства:
Определим сопротивление системы:
Действительно, если проверить кабель(от ПС до РУ) на термическую стойкость по данному значению то минимальное сечение будет несколько меньше, чем рассчитанное выше.
Определим постоянную времени:
Ку = 1,351
Определим ток короткого замыкания в точке К2 (для КТП №1).
Предварительно по нагреву был выбран кабель марки ААШВсечением 150 мм
Для этого кабеля определим (по таблицам справочников или из технических данных) удельные активные и реактивные сопротивления:
Rуд150 = 0,206 Ом/км; Xуд150 = 0,074 Ом/км.
Определим ток короткого замыкания на выводах высшего напряжения трансформатора:
Определим суммарное сопротивление до точки К2:
Активные сопротивления учитывались в обоих случаях, так как не выполнялось условие: R* < X*/3.
Ток короткого замыкания в точке К2:
Постоянная времени:
Ударный коэффициент:
Ударный ток короткого замыкания:
Время действия защиты для РУ -6 кВ (ступень селективности) примем равным 0,5 с.
Собственное время отключения выключателя примем 0,015 с (для выключателя ВВ/TEL).
Действительное время К.З составит:
Приведенное время для апериодической составляющей составит приблизительно 0,05 с.
Для систем с источниками питания, ЭДС которых неизменна во времени, можно считать, что tп.п = tд .
Таким образом, приведенное время К.З:
.
Минимальное сечение по условию нагрева током короткого замыкания: