Рефераты

Электроснабжение машиностроительного предприятия. Реконструкция распредустройства

Ближайшее меньшее стандартное сечение: 50 мм 2.

По экономической плотности тока:

Стандартное ближайшее сечение 150 мм 2.

По потере напряжения проверять кабель не имеет смысла по причине небольшой длины.

Таким образом, выбираем кабель ААШв 3g150 - 6.

Кабель работающий параллельно к двухтрансформаторной КТП №1 выбирается аналогично.

Произведем выбор кабелей к КТП №2 и КТП №3.

Определим расчетные токи для кабелей в случае выхода из строя одного из трансформаторов:

Для КТП №2:

Для КТП №3:

Отметим, что расчетные мощности для КТП даны с учетом потерь в трансформаторах, причем в аварийном режиме потери возрастают пропорционально квадрату коэффициента загрузки. Учет потерь не вносит в расчет и выбор токоведущих частей каких - либо значительных изменений, поэтому на этапе курсового проектирования их можно было и не учитывать. Итак, выбираем кабель ААШв 3g150 - 6.

Определим токи короткого замыкания в точках К3 .

Постоянная времени:

Ударный коэффициент:

Ударный ток короткого замыкания:

Определим токи короткого замыкания в точках К4 .

Постоянная времени:

Ударный коэффициент:

Ударный ток короткого замыкания:

Проверяем выбранные кабели на термическую устойчивость:

Минимальное сечение для кабеля второй КТП по условию нагрева током короткого замыкания определяется аналогично выбору термически стойкого сечения для КТП №1.

Ближайшее меньшее стандартное сечение: 50 мм 2.

По экономической плотности тока:

Стандартное ближайшее сечение 150 мм 2.

По потере напряжения проверять кабель не имеет смысла по причине небольшой длины.

По экономической плотности тока:

Стандартное ближайшее сечение 150 мм 2

Проверим кабель по потере напряжения:

Потери напряжения незначительны.

Расчет токов короткого замыкания проводился в относительных единицах. Расчет для кабельной линии длиной 1, 76 км проводится аналогично, поэтому приведем значения токов короткого замыкания без расчетных формул.

Итак, ток короткого замыкания на второй шине составит: 7,39 кА, действительно, так как линия короче, то ток будет несколько выше. Причем активным сопротивлением в данном случае принебрегли. Ударный ток короткого замыкания при коэффициенте ударном 1,4 составил на шине 14,7 кА.

Составим итоговую таблицу расчета токов короткого замыкания:

Таблица 3

Место расчета тока короткого замыкания

От источника

ПС №1

От источника

ПС №2

Iп,кА

iуд,кА

Iп, кА

iуд,кА

Шины РУ-6 кВ

6,9

13,2

7,39

14,7

Ввод трансформатора КТП №1

6,8

12,9

7,36

14,3

Ввод трансформатора КТП №2

6,3

11,1

6,5

11,7

Ввод трансформатора КТП №3

5,8

9,8

6

10,2

Результаты полностью соответствуют теоретическим положениям. Действительно, чем меньше сопротивление, тем больше ток. Результаты в первом и во втором случае отличаются незначительно. Выбранные ранее марка и сечение кабелей при расчете токов короткого замыкания применимы и во втором случае.

Действительно, наибольшее минимальное сечение термически устойчивое к току короткого замыкания составит:

Ближайшее стандартное сечение 50 мм 2.

Выбрано сечение 150 мм 2.

Проверка по потере напряжения для кабеля длиной 1,76 км не требуется, так как суммарная потеря напряжения для линий от источника питания (ПС) до трансформатора КТП №3 (самой удаленной) при длине кабелей 2 км и 0,63 км составит: , что составляет в процентном соотношении 3,7% (нормированное отклонение ?U =5%).

Выбраны марки следующих кабелей:

Для прокладки в траншее от ЗРУ подстанции до проектируемого распред-устройства принимаем кабель: ААПл 2(3g185)-6. Кабель с алюминиевыми жилами, с бумажной изоляцией, пропитанной вязким (нестекающим) составом, бронированный круглыми стальными оцинкованными проволоками (защитный покров типа Пл) (АО «ВНИИКП», Москва, Россия). Примем при этом, что кабель может быть подвержен растягивающим усилиям. Общее количество кабелей: 4.

Для прокладки открыто от РУ -6 кВ до КТП принимаем кабель:

ААШв 3(g150) - 6. Кабель с алюминиевыми жилами, с бумажной изоляцией, пропитанной вязким (нестекающим) составом, в защитном шланге из поливинилхлоридного пластиката (защитный покров типа Шв) (АО «ВНИИКП», Москва, Россия). Примем при этом, что для кабеля не существует опасности механического повреждения. Общее количество кабелей: 6.

Выбор и проверка шин проектируемого распредустройства.

Выбор сечения шин производится по нагреву. Проверку шин производят на электродинамическую и термическую стойкость к токам короткого замыкания.

Суммарная нагрузка приходящаяся на шину в условиях работающего секционного выключателя (аварийный режим):

Определим ток при максимальной нагрузке:

Принимаем алюминиевые шины прямоугольного сечения 50g5, для которых токовая нагрузка определяется следующим образом:

при условии расположения шин на ребро.

Проверяем сборные шины на термическую стойкость при К.З.

, где б - коэффициент термической стойкости принимаемый по таблицам.

Сечение выбранных шин 249 мм 2.

Для алюминия (сплав алюминия АД31Т) допустимое напряжение составляет 91 МПА.

Определим максимальное расчетное напряжение в материале шин:

Частота собственных колебаний шины определяется выражением:

где m - масса шины на единицу длины (кг/м), E = 6,5H10 10 - модуль упругости для сплава АД31Т (Па), J - момент инерции.

Таким образом, механического резонанса не возникнет. Проверка на электродинамическую стойкость согласно ПУЭ не требуется. Найденное значение частоты собственных колебаний приводится лишь для демонстрации того, что на практике условия, при которых механического резонанса не возникнет соблюдены.

Таким образом, шины проходят проверку по механической прочности:

: 6,443 < 91.

1.8. Выбор и расчет аппаратов

Основным заданием является реконструкция распределительного устройства. Ввиду отсутствия точных данных о помещении, в котором располагаются РУ, примем вариант замены камер КСО -272 на камеры КСО - 298.

Основные технические данные:

(Промышленный каталог 02.64.01 - 2001)

Камеры КСО-298 напряжением 6 и 10 кВ предназначены для распределительных устройств переменного трехфазного тока частотой 50 Гц систем с изолированной нейтралью или заземленной через дугогасительный реактор и изготовляются для нужд народного хозяйства и для поставки на экспорт и предназначены взамен камер серий КСО-272, КСО-285, КСО 2УМ3. Камеры имеют меньшие габариты, что позволяет их использовать для модернизации и расширения (увеличения количества фидеров) на уже существующих площадях РУ.

Таблица 4

Признак классификации

Исполнение камер КСО

Вид камер КСО в зависимости от установленной в них аппаратуры

С высоковольтными выключателями и электромагнитным приводом:
с высоковольтными выключателями и пружинным (двигательным) прив
одом;
с силовыми предохранителями;
с выключателями нагрузки;
с трансформаторами напряжения;
с разъединителями;
с силовыми трансформаторами собственных нужд;
с кабельными сборками;
с аппаратурой собственных нужд;
с ограничителями перенапряжений

Уровень изоляции по ГОСТ 1516.1-79

С нормальной изоляцией

Система сборных шин

С одной системой сборных шин

Изоляция ошиновки

С неизолированными шинами

Исполнение линейных высоковольтных вводов

С кабельными вводами;
с шинными вводами (от силового трансформатора)

Род установки

Для внутренней установки в электропомещениях

Степень защиты по ГОСТ 14254-96

IP20 для наружных оболочек фасада и боковых стенок; IP30 для боковых стенок крайних в ряду камер; IP00 для остальных частей камер

Условия обслуживания

Одностороннего обслуживания

Таблица 5

Основные технические параметры

Значение параметра

Номинальное напряжение (линейное), кВ

6; 10

Наибольшее рабочее напряжение, кВ

7,2; 12

Номинальный ток главных цепей камер КСО, А

200; 400; 630

Номинальный ток сборных шин, А

630; 1000

Номинальный ток шинных мостов, А

630; 1000

Номинальный ток отключения высоковольтного выключателя, кА

20

Номинальный ток плавкой вставки силового предохранителя, А

2; 3; 5; 8; 10; 16; 20; 31,5 -160;
160 (для 6 кВ)

Номинальный ток электродинамической стойкости главных цепей камер КСО (амплитуда), кА

51

Ток термической стойкости (3 с), кА

20

Номинальное напряжение вспомогательных цепей, В:

цепи защиты, управления и сигнализации постоянного
и переменного тока

220

цепи трансформаторов напряжения

100

цепи освещения:

внутри камеры КСО

36

В таблицах 4 и 5 даны основные технические данные камер КСО-298.

Максимальные расчетные токи кабельных линий, идущих от РУ -6 кВ до подстанций не превышают значения 225 А. Минимальное значение тока составляет 203,5 А. В этом случае целесообразнее было бы установить выключатели нагрузки с предохранителями ПКТ на 400 А, однако максимальный ток плавкой ставки силового предохранителя в камерах КСО - 298 составляет только 160 А.

Следовательно, примем к рассмотрению вариант с вакуумными выключателями ВВ/TEL - 10 на 400 А.

В качестве измерительного трансформатора напряжения примем к рассмотрению вариант с установкой трансформатора 3g3НОЛ-6 (трансформатор напряжения однофазный с литой изоляцией).

В цепи трансформатора напряжения устанавливается ограничитель перенапряжения ОПН-КР/ТЕL-6 и предохранитель ПКН 001 -10 (изготовитель допускает установку предохранителя в цепь 6 кВ).

Выбор и проверка выключателей 6 кВ сведена в таблицу 6:

Таблица 6

Параметры

Усл.

обознач.

Ед.

изм.

Условие

выбора

Данные выключателя

Дополнительные

сведения

Расчетные

Каталог

Выбор

Номинальное напряжение,

Uн

кВ

6

10

Вводной

Отх. к КТП №1

Отх. к КТП №2

Отх. к КТП №3

Номинальный ток

Iн

А

560,8

215,5

222,9

203,5

630

400

400

400

Вводной

Отх. к КТП №1

Отх. к КТП №2

Отх. к КТП №3

Проверка

Ток отключения

Iн.откл

кА

7,39

20

Вводной

Отх. к КТП №1

Отх. к КТП №2

Отх. к КТП №3

Проверка

Допустимый ударный ток К.З.

iном.дин

кА

14,7

52

Вводной

Отх. к КТП №1

Отх. к КТП №2

Отх. к КТП №3

Проверка

Ток термической стойкости за время tном.т.с.3 с.

Iном.т.с.

кА

3,207

20

Вводной

Отх. к КТП №1

Отх. к КТП №2

Отх. к КТП №3

Номинальная мощность отключения

Sном.откл

кВА

76,8

207,8

Вводной

Отх. к КТП №1

Отх. к КТП №2

Отх. к КТП №3

Выбор выключателей проведен для одной секции шинбольшими токами короткого замыкания), выбор для другой секции осуществляется аналогично.

Выбор секционного и подстанционного выключателя проведем отдельно.

Секционный выключатель должен обеспечить коммутацию в условиях аварии, когда отключен один из вводов. Поэтому выбор в общем случае должен осуществляться по току наиболее загруженной секции. В нашем случае это не принципиально, так как нагрузка распределена равномерно. Приведем итоговые таблицы распределения нагрузок.

Таблица 7

1 секция

КТП №1

2 секция

КТП №1

1 корпус

2 корпус (без учета шлифовального участка и столовой АБК)

3 корпус

Вспомогательные: склад ГСМ, вентиляция,

станочное отделение

2 корпус (шлифовальный участок, столовая)

Суммарная нагрузка:

P = 958,77 кВт; Q = 345,32 кВАр

Суммарная нагрузка:

P = 1055,94кВт; Q = 375,72кВАр

Таблица 8

1 секция

КТП №2

2 секция

КТП №2

6 корпус+Сторонние

76% мощности 5 корпуса

24 % мощности 5 корпуса

Суммарная нагрузка:

P = 1112 кВт; Q = 194,35 кВАр

Суммарная нагрузка:

P = 1117 кВт; Q = 92,52 кВАр

Таблица 9

1 секция

КТП №3

2 секция

КТП №3

Вспомогательные: компрессорная, гараж.

Вспомогательные: КНС, очистные

4 корпус

Суммарная нагрузка:

P = 942,45 кВт; Q = 353,12 кВАр

Суммарная нагрузка:

P = 902,2 кВт; Q = 460,1 кВАр

Таблица 10

Общая нагрузка РУ -6кВ 1 секции

Общая нагрузка РУ -6кВ 2 секции

Суммарная нагрузка (без потерь):

P = 3013,02 кВт; Q = 892,9 кВАр

Суммарная нагрузка (без потерь):

P = 3075,34 кВт; Q = 928,64 кВАр

S = 3142,538 кВА

S = 3212,494 кВА

Необходимо различать два режима: нормальный и аварийный. При выборе аппаратов необходимо за расчетный режим работы сети принимать наиболее тяжелый. В нашем случае самым тяжелым режимом будет режим, при котором будет отключен один из вводов, а также выйдут из строя ( в результате аварии или ремонта) трансформаторы на комплектных трансформаторных подстанциях, то есть в работе будут принимать участие не 6 трансформаторов, а только 3.

Таким образом, секционный выключатель должен быть проверен на коммутацию полной расчетной мощности предприятия. При определении суммарной нагрузки необходимо учитывать потери, возрастающие в аварийном режиме пропорционально квадрату коэффициента загрузки трансформатора при работе одного трансформатора. Как уже отмечалось выше, на КТП установлены масляные трансформаторы. Такой выбор обусловлен прежде всего соображениями экономии (так как в камерах КСО установлены вакуумные выключатели, то при установке сухих трансформаторов пришлось бы рассматривать варианты защиты от перенапряжений, возникающих в процессе коммутации, при установке масляных трансформаторов такой защиты не требуется).

Суммарная нагрузка на одной из секции шин с учетом потерь в трансформаторах, работающих в аварийном режиме, составит:

P = 5566 кВт, Q = 4557 кВАр.

Сравнивая это значение со значением нагрузки, полученным выше (при расчете компенсирующих устройств P =5549 кВт и Q = 4462 кВАр), получим практически одинаковые результаты. Следовательно, потери в 6 трансформаторах, нормально работающих, и потери в 3 трансформаторах, работающих в режиме аварийной перегрузки, практически равны.

С учетом компенсации расчетная мощность S = 5874 кВА.

Следовательно, расчетный ток:

Выбираем выключатель ВВ/TEL на 630 А (ближайшее большее значение тока).

Проверка выключателя осуществляется аналогично проверке других выключателей в соответствии с таблицей 6.

В задании на проектирование не указан тип выключателя на подстанции. Примем к рассмотрению вариант, при котором в ЗРУ подстанции установлены камеры КМ -1Ф с выключателями ВКЭ-М-10.

Расчетный ток кабельного ввода был найден ранее и составил 560,8 А.

По расчетному току выбираем выключатель ВКЭ-М-10-31,5/630. Номинальный ток выключателя 630 А.

Осуществим проверку выключателя:

По току отключения: на шинах подстанции Iк.з = 8,5 кА. Номинальный ток отключения 31,5 кА. (8,5 кА < 30 кА).

Проверка на электродинамическую стойкость:

Ток электродинамической стойкости выключателя 80 кА.

Расчетный ударный ток К.З.:

, где ударный коэффициент принят 1,94 (по таблице 2.45 стр.127 (8)).

23,32 кА--<--80 кА.

Проверка тока термической стойкости

Для выключателя ток термической стойкости для промежутка времени 3 с составляет 31,5 кА.

Приведенное время К.З. (собственное время выключателя составляет 0,05с). Апериодическую составляющую не учитываем, так как действительное время К.З больше 1 с. Приведенное время приравниваем к действительному, так как считаем энергосистему удаленной, мощность которой равна бесконечности. Итак, 31,5 кА > 5,487 кА.

Номинальная мощность отключения выключателя составляет:

Sном.откл і Sрасч.откл.

Итак, выбранные выключатели удовлетворяет всем условиям проверки.

Разъединители не проверяются по условию отключения токов К.З. и отключаемой расчетной мощности К.З. В остальном выбор и проверка разъединителей не отличается от выбора и проверки выключателей высокого напряжения.

Выбор и проверка разъединителей представлены в таблице 11.

Таблица 11

Параметры

Усл.

обознач.

Ед.

изм.

Условие

выбора

Данные выключателя

Дополнительные

сведения

Расчетные

Каталог

Выбор

Номинальное напряжение,

Uн

кВ

6

10

Вводные

Отх. к КТП №1

Отх. к КТП №2

Отх. к КТП №3

Номинальный ток

Iн

А

560,8

215,5

222,9

203,5

630

400

400

400

Вводные

Отх. к КТП №1

Отх. к КТП №2

Отх. к КТП №3

Проверка

Допустимый ударный ток К.З.

iном.дин

кА

14,7

50

40

40

40

Вводной

Отх. к КТП №1

Отх. к КТП №2

Отх. к КТП №3

Проверка

Ток термической стойкости за время tном.т.с.4 с.

Iном.т.с.

кА

2,79

20

16

16

16

Вводной

Отх. к КТП №1

Отх. к КТП №2

Отх. к КТП №3

Страницы: 1, 2, 3, 4


© 2010 Современные рефераты