Федеральное агентство по науке и высшему образованию РФ
Воронежский Государственный Университет
Геологический факультет
Кафедра полезных ископаемых и недропользования
Курсовой проект по «Технике разведки».
Задание № 70.
Выполнила студентка 3 курса
геологического факультета:
Филиппова Е.В.
Руководитель:
Холин В.М.Воронеж, 2006 г.СодержаниеВВЕДЕНИЕ. ЧАСТЬ I. БУРЕНИЕ СКВАЖИН 1.1. Выбор и обоснование способа бурения и основных параметров скважины 1.2. Выбор и обоснование проектной конструкции скважин 1.2.1. Расчет параметров многоствольной скважины 1.2.2. Составление ГТН 1.3. Выбор и обоснование бурового оборудования 1.4. Промывка скважины 1.4.1. Схема промывки скважины 1.4.2. Выбор промывочной жидкости 1.4.3. Очистка промывочного раствора от шлама 1.4.4. Расчет количества буровых растворов 1.5. Тампонаж скважины 1.5.1. Схема тампонирования скважины 1.5.2. Расчет количества тампонирующего раствора 1.6. Технология колонкового бурения 1.6.1. Технологические режимы бурения 1.6.2. Бурение по пласту полезного ископаемого 1.7. Ликвидация скважин 1.8. Техника безопасности ЧАСТЬ II. ПРОХОДКА ГОРНОРАЗВЕДОЧНЫХ ВЫРАБОТОК 2.1. Выбор и обоснование типа, формы и размеров (сечения) горных выработок 2.2. Выбор и обоснование способа проходки, основного оборудования 2.3. Буровзрывные работы 2.3.1. Расчет рациональной длины заходки и глубины шпуров 2.3.2. Разметка и бурение шпуров 2.3.3. Обоснование выбора и расчет требуемого количества ВВ 2.3.4. Обоснование способа и выбор средств взрывания 2.3.5. Хранение взрывчатых веществ. 2.4. Вентиляция горных выработок 2.5. Уборка отработанной породы 2.6. Крепление горных выработок 2.7. Водоотлив и освещение 2.8. Ликвидация горных выработок 2.9. Техника безопасности 2.9.1. Техника безопасности при проходке разведочных горных выработок 2.9.2. Техника безопасности при проведении взрывных работ ЧАСТЬ III. ПРОХОДКА ГОРНОРАЗВЕДОЧНЫХ ВЫРАБОТОК 3.1. Организация буровых работ 3.2. Организация горных работ ВВЕДЕНИЕ.
Курсовой проект по «Технике разведки» представляет собой завершающий этап лекционного курса, лабораторных и индивидуальных занятий. Целью курсо-вого проекта является ознакомление студентов с имеющимися техническими сред-ствами разведки месторождений полезных ископаемых, технологиями проведения геологоразведочных работ и проектированием геологоразведочных работ.
Задание № 70.
1. Подсечь 2 двуствольными скважинами жилообразную залежь хромитовых руд мощностью 45 м, с углом падения 40° на ЮЗ, залегающую среди дунитов. Глубина подсечения 600 м от устья скважины. Приращение зенитного угла 2° (выполаживание), азимутального 1° (отрицательное), интервал размеров через 50 м.
2. Пройти 3 штольни длиной 200м каждая.
3. Пройти 25 канав длиной 20 м каждая.
Проектные геологические разрезы:
а) по стволу скважины: 0,0-5,0 м - наносы, 5,0-30,0 м - песчаники; 30,0 м и ниже - дуниты с рудной залежью. В интервале 65,0-110,0 м - зона поглощения.
б) по штольне: 0,0-5,0 м - наносы; 5,0-40,0 м - песчаники; 40,0-150,0 м - дуниты; 150,0-190,0 м - хромитовая руда; 190,0-200,0 м - дуниты.
в) по канавам: 0,0-2,5 м - наносы; 2,5-3,0 м - хромитовая руда.ЧАСТЬ I. БУРЕНИЕ СКВАЖИН
1.1. Выбор и обоснование способа бурения и основных параметров скважины
Основным техническим средством при разведке месторождений твердых по-лезных ископаемых является колонковое бурение. В меньшей мере для этих целей применяется роторное бурение и ударно-канатное бурение. Колонковое бурение получило широкое распространение по следующим причинам:
- Оно позволяет извлекать из скважины керн, по которому можно наи-более точно составить геологический разрез и опробовать полезное ископае-мое.
- Колонковым способом можно бурить скважины под любым углом к горизонту, различным породоразрушающим инструментом, в породах любой твердости и устойчивости.
- Этим способом можно бурить скважины малых диаметров и на боль-шую глубину, применяя относительно легкое оборудование.
К недостаткам колонкового бурения относятся высокая аварийность и низкий выход керна при проходке рыхлых, неустойчивых и трещиноватых пород [12].
Выполнение поставленной задачи - подсечение залежи хромовитых руд - целесообразно выполнять посредством колонкового бурения.
Глубина скважины определяется необходимостью полного пересечения сква-жиной рудного тела и углубления в подстилающие породы на 10-15 м. По заданию глубина подсечения рудного пласта 600 м. При мощности рудного пласта 45 м и углублению в подстилающие породы на 10 м глубина скважины составит 655 м.
1.2. Выбор и обоснование проектной конструкции скважины
Конструкцией скважины называется ее технический разрез, в котором ука-заны диаметры бурения по интервалам глубины, диаметры обсадных труб и глуби-на их установки, места и способы тампонажа, технологические параметры бурения по интервалам глубин.
При выборе конструкции скважины следует руководствоваться следующими соображениями:
- конструкция скважины должна быть предельно простой;
- количество обсадных труб должно быть минимальным;
- диаметр скважины должен быть как можно меньше. Выбор конструкции скважины зависит от следующих параметров:
- способы бурения;
- технические характеристики бурового станка;
- виды полезного ископаемого;
- глубина скважины;
- физико-механические свойства горных пород;
- конечный диаметр скважины.
Условия для выбора конструкции скважины:
- глубина скважины 655 м;
- конечный диаметр бурения скважины зависит от вида полезного ис-копаемого и определяется инструкциями (59 мм).
Способы бурения:
1) в интервале о 0,0 до 6,0 м - твердосплавное бурение;
2) от 6,0 м до конца скважины - алмазное бурение.
Бурение в осложненных условиях.
Осложненными считаются условия, требующие специальных технологиче-ских операций при бурении в этих интервалах. Согласно приведенному геологиче-скому разрезу, интервалы с осложненными условиями бурения следующие:
1) 0,0 - 5,0 м - наносы;
2) 65,0 - 110,0 м - зона поглощения.
Предусматривается перекрытие интервалов с осложненными условиями буре-ния колоннами обсадных труб и производство затрубного цементного тампонажа -на 5 м выше и 5 м ниже раздробленных пород.
Промывка скважины:
1) в интервале 0,0 - 5,0 м - промывка глинистым раствором;
2) в интервале 5,0 - 655,0 м - промывка технической водой.
1.2.1. Расчет параметров многоствольной скважины
В зависимости от условий залегания полезного ископаемого, разведочные скважины задаются вертикальными или наклонными. В процессе бурения разведочные скважины часто искривляются, что создает ряд технических трудностей в процессе бурения и усложняет подсчеты запасов полезного ископаемого. Поэтому сохранение заданного направления, т.е. проходка направленных скважин, является одним из основных критериев, определяющих качество разведочного бурения. С учетом возможностей искривления скважин и для более успешного выполнения задания некоторые скважины проектируются и бурятся по сложному криволинейному профилю - направленные скважины. Практически все скважины являются направленными, поскольку основная задача разведочного бурения - это встреча рудного пласта в заранее заданной точке.
Для повышения эффективности буровых работ применяется многоствольное бурение. При построении многоствольной скважины, отклонившись от прямолинейного первоначального направления, занимает сложное пространственное положение, которое для каждой точки оси скважины может быть определено путем измерения 3-х параметров зенитного угла, азимутального угла и расстояния от устья скважины до данной точки.
Азимутальный угол - дает возможность определения проекции ствола скважины на горизонтальную плоскость. Он выбирается в зависимости от азимута падения рудного тела.
Зенитный угол - это положение любой точки ствола скважины по отношению к вертикали. Это угол между вертикалью и касательной к стволу скважины в любой точке вертикальной проекции.
Расстояние от устья скважины до данной точки ствола определяется длиной бурильного вала или кабеля с измерительной аппаратурой, опущенной в данную точку ствола.
Глубина основного ствола скважины определяется суммой глубины подсечения рудного пласта и длиной углубления ствола скважины в подстилающие породы.
lб= 600 +45+10=655 (м)
Для интервала глубины основного ствола скважины начальный зенитный угол должен быть в пределах 5-20°. Азимут падения рудного тела составляет 40°, следовательно, азимутальный угол составляет °/
Среднее значение зенитных и азимутальных углов забуривания основного ствола скважины вычисляются по формуле:
Q=( б1+б2)/2, где Q- среднее значение зенитного угла.
Приращение зенитного угла по заданию составляет 2° (выполаживание), азимутального 1° (отрицательное); интервалы замеров через 50 метров.
Данные расчетов приведены таблице 1.
Таблица 1
Средние значения зенитных и азимутальных углов по стволу скважины
Глубина замеров
(м)
Величина зенитного угла (Q°)
Величина азимутального угла (б°)
Интервалы замеров
(м)
Величина среднего зенитного угла (Q°)
Величина среднего азимутального угла (б°)
1
2
3
4
5
6
0
50
100
150
200
250
300
350
400
450
500
550
600
650
15
17
19
21
23
25
27
29
31
33
35
37
39
41
30
29
28
27
26
25
24
23
22
21
20
19
18
17
0-50
50-100
100-150
150-200
200-250
250-300
300-350
350-400
400-450
450-500
500-550
550-600
600-650
16
18
20
22
24
26
28
30
32
34
36
38
40
29,5
28,5
27,5
26,5
25,5
24,5
23,5
22,5
21,5
20,5
19,5
18,5
17,5
На основании средних значений зенитного угла построен типовой профиль основного ствола скважины. На основании средних значений азимутального угла построена инклинограмма (приложение 1).
Для построения основного ствола скважины необходимо рассчитать интенсивность искривления скважины.
Интенсивность зенитного искривления скважины определяется по формуле:
г0 =
?Q
,(1)
?l
где ?Q - приращение зенитного угла; ?l - интервал между замерами;
г0 - интенсивность зенитного искривления.
г0 =
2
= 0,04 град/м
50
Интенсивность азимутального искривления определяется по формуле:
г =
?d
,
?l
где г - интенсивность азимутального искривления; ?d - приращение азимутального угла.
г =
1
= 0,02 град/м
50
Радиус искривления основного ствола вычисляется по формуле:
R =
57.3
,
г0
где R - радиус искривления.
R= 1432,5
L =
R* г
,
57.3
L =
1432,5* 93
= 2325 м
57,3
Построение основного ствола скважины - приложение 2.
Основной ствол подсекает рудное тело в точке на глубине 600 м от устья скважины. Величина зенитного угла в точке подсечения определяется по формуле:
Q =
l*57.3
+Q0 ,
R
где l - длина ствола скважины до точки подсечения; Q-зенитный угол забуривания; R-радиус искривления.
Q =
600*57,3
+ 2 = 28°
1432,5
Согласно заданию, линза хромитовых руд залегает под углом 40° к горизонтальной плоскости. Можно рассчитать угол встречи по формуле:
г =Q+(90-h)
г=28+(90-40)=78°
Конечный зенитный угол основного ствола скважины составит:
Q =
l*57.3
+Q0 ,
R
где l - длина всего ствола скважины; Q0- приращение зенитного угла; R -радиус искривления.
Q =
655*57,3
+ 2 = 28,2°
1432,5
Таблица 2
Распределение объемов бурения по категориям
№ пп
Наименование породы
Категория
Объемы бурения (пог. м.)
по 1 скважине
по совокупности скважин
основной ствол
дополнит. ствол
основной ствол
дополнит. ствол
1.
Наносы
III
5,0м
10,0м
2.
Песчаники
VII
25,0 м
50,0 м
3.
Дуниты
VII
35,0м
70,0 м
4.
Зона поглощения
VII
45,0м
90,0м
5.
Дуниты
VII
490,0м
540,0м
980,0 м
1080,0 м
6.
Хромитовые руды
VII
45,0 м
50,0 м
90,0 м
100,0 м
7.
Дуниты
VII
10,0м
10,0м
20,0 м
20,0 м
1.3. Выбор и обоснование бурового оборудования
Буровое оборудование выбирается в зависимости от глубины бурения, диа-метра скважины, способа бурения. Исходя из глубины скважины (655 м), конечно-го диаметра бурения (59 мм) и колонкового способа бурения проектом предусмат-ривается применение установки колонкового бурения - УКБ-5П-500/800.
Передвижная буровая установка УКБ-5П (УКБ-500/800) является модифика-цией установок 5 класса (ГОСТ 7959-74).
В состав установки входят:
- буровой станок СКБ-5;
- буровая мачта БМТ-5;
- передвижное буровое здание ПБЗ-5;
- контрольно-измерительная аппаратура «Курс-411»;
- транспортная база ТБ-15;
- буровой насос НБ4-320/63 (2 шт.);
- грузоподъемные принадлежности:
· элеватор-50,
· элеватор 50/54,
· вертлюг-пробка-50,
· вертлюг-пробка-54,
· полуавтоматический элеватор;
- труборазворотРТ-1200.
Станок СКБ-5 оснащен контрольно-измерительной аппаратурой «Курс-411», в которую входят:
- Индикатор веса бурового снаряда, Н 50000
- Индикатор усилия на крюке, Н 80000
- Измеритель нагрузки, Н 25000
- Манометр для измерения давления, Н/см2 0-1000
- Индикатор механической скорости бурения, м/ч 0-3; 0-15.
Техническая характеристика буровой установки приведена в таблице 4.
Таблица 4
Техническая характеристика буровой установки УКБ-5П-500/800
Параметры
УКБ-5П-500/800
Глубина бурения при конечном диаметре скважины 59 мм, м
800
Начальный диаметр скважины, мм
151
Диаметр бурильных труб, мм
50; 54; 63,5; 68
Частота вращения, об/мин:
120;260;340;410; 540;720;1130;1500
Наибольшее усилие подачи, Н:
вверх
85000
вниз
65000
Грузоподъемность лебедки, кг
3500
Скорости навивки каната на барабан, м/с
0,7-6,0
Мощность электродвигателя для привода бурового станка, кВт
30
Мощность буровый установки, кВт
98
Высота мачты, м
19
Длина свечи, м
13,5
Тип бурового насоса
НБ4-320/63
Число буровых насосов
1
Максимальный расход, л/мин
320
Максимальное давление, Н/см2
400
Мощность электропривода насосов, кВт
22
Габаритные размеры установки, м:
длина
10,70
ширина
4,56
высота
19,10
Масса, кг:
станка
2200
установки
17500
1.4. Промывка скважины
Целью промывки скважины является:
- удаление шлама из забоя;
- охлаждение породоразрушающего инструмента;
- закрепление неустойчивых стенок скважины;
- понижение твердости горных пород;
- смазка бурового инструмента.
1.4.1. Схема промывки скважины
Проектом предусматривается прямая схема промывки скважин с замкнутой системой водопотребления. Достоинства:
- буровой раствор, выходя из суженных промывочных отверстий поро-доразрушающего инструмента, приобретает большую скорость и с силой уда-ряет о забой, размывая разбуренную породу, что способствует увеличению скорости проходки;
- применяя специальные промывочные жидкости при бурении в сыпу-чих, рыхлых и трещиноватых породах, обеспечивает закрепление стенок скважины путем скрепления частиц неустойчивой породы;
- технически и технологически самая простая и дешевая.
Недостатки:
- пониженный процент выхода керна в результате динамического воз-действия струи на верхний торец керна, что приводит к его размыву;
- при бурении скважин большого диаметра повышенный расход про-мывочной жидкости, необходимой для создания такой скорости восходящего потока, при которой все разбуренные частицы породы будут выноситься на поверхность;
- возможность размыва стенок скважины у забоя при бурении в мягких породах вследствие большой скорости восходящего потока [7, 12]. Для пород слагающих заданный геологический разрез указанные недостатки не имеют значения.
При прямой промывке жидкость насосом по нагнетательному шлангу по-дается к забою по бурильной колонне (рис. 1), охлаждает породоразрушающий инструмент, омывает забой и поднимается по кольцевому пространству между стенками скважины и колонной бурильных труб, транспортируя на поверхность разбуренную породу.
По выходе из скважины промывочный раствор пропускают по системе жело-бов и отстойников для очистки его от частиц породы. Очищенный раствор вто-рично нагнетается в скважину. При поглощении промывочной жидкости в порис-тых породах в емкость добавляют новые порции раствора [15].
Нормальный глинистый раствор должен отвечать следующим требованиям: - Плотность раствора должна соответствовать величине 1,15-1,25 г/см3. Повышенная плотность способствует лучшему очищению забоев скважины от крупного и тяжелого шлама, предотвращает самоизливание воды из скважины и обвалы пород из стенок скважины.
- Вязкость. От вязкости зависит способность раствора выносить на по-верхность шлам и закупоривать трещины и поры в горной породе на стенках скважины. Вязкость измеряется в секундах, для нормального раствора состав-ляет 18-22 сек.
- Водоотдача - это способность раствора отфильтровывать жидкую фазу под действием избыточного давления. Нормальный глинистый раствор имеет водоотдачу 8-10 см за 30 мин. с каждого литра раствора.
- Статическое напряжение сдвига - это усилие, способное вывес-ти глинистый раствор из состояния покоя. Это напряжение должно со-ставлять 2-3 Па [7]. Применение глинистого раствора при бурении скважин в интервале 5,0 - 655,0 м нецелесообразно, поскольку керн дунитов водой не размывается, а стенки скважины устойчивые.
1.4.3. Очистка промывочного раствора от шлама
Промывочный раствор по выходе из скважины на поверхность содержит час-тицы разбуренной породы (шлам). Своевременная и качественная очистка промы-вочных жидкостей является одним из важнейших условий эффективности процесса бурения разведочных скважин. Накопление шлама в промывочном растворе суще-ственно ухудшает его качество. Снижается глинизирующая способность глинисто-го раствора, что приводит к образованию толстой рыхлой корки на стенках сква-жины и создает опасность обвалов. Использование зашламованных растворов при-водит к преждевременному износу насосов и бурового снаряда. За счет повышения удельного веса промывочной жидкости уменьшается механическая скорость буре-ния, возрастает вероятность поглощения.
Очистка промывочной жидкости осуществляется в поверхностной циркуля-ционной системе, которая состоит из желобов, отстойников и приемных баков. Длина и размеры желобов, количество и объем отстойников и приемных емкостей зависят от глубины и диаметра скважины и условий бурения. Количество емкостей, объем и конфигурация их определяются производственной необходимостью и ма-териально-техническими возможностями предприятий.
Типовая циркуляционная система при бурении скважин самоходными буро-выми установками приведена на рис. 2. Желоба делают в открытом грунте без крепления стенок или изготовляют из досок или листового железа. Устанавливают с уклоном 1,0-1,5 см на 1 м длины, ширина желобов ~30 см, высота ~25 см. По дну желоба через 1,5-2,0 м друг от дру-га ставят перегородки. Объем циркуляционной поверхностной системы зависит от глубины скважины. Ее длина для скважин глубиной до 500 м составляет 15м, для скважин более 500 м - 25-30 м.
Рис. 2. Схема циркуляционной системы самоходных буровых установок.
Очистная способность желобной системы зависит от степени разрушения структуры, которая зависит от скорости движения раствора по желобам. При не-большой скорости разрушение структурного сцепления в растворе происходит только около стенок и дна, а выпадение частиц породы наблюдается в ограничен-ном объеме. При чрезмерной скорости раствора частицы почти полностью перено-сятся в приемную емкость. Наиболее полное удаление шлама наблюдается при не-которой оптимальной скорости течения, когда происходит максимальное разру-шение структуры раствора и отсутствует турбулентный режим течения.
Очистку желобной системы от шлама производят при прекращении циркуля-ции раствора.
Естественный метод очистки является наиболее эффективным при использо-вании в качестве промывочной жидкости воды и маловязких растворов [3, 7, 15].
1.4.4. Расчет количества буровых растворов
Расчет количества глинистого раствора
Общий объем глинистого раствора для бурения одной скважины составляет:
Vo = V1 + V2 +V3(м3), где
Vo- общий объем глинистого раствора для бурения одной скважины;