Управление техническими системами (лекции)
Фв(s) = [pic]= [pic] - по возмущению.
Поскольку передаточная функция разомкнутой системы является в общем
случае дробно-рациональной функцией вида W( = [pic], то передаточные
функции замкнутой системы могут быть преобразованы:
Фз(s) = [pic]= [pic], Фe(s) =[pic]= [pic].
Как видно, эти передаточные функции отличаются только выражения ми
числителей. Выражение знаменателя называется характеристическим выражением
замкнутой системы и обозначается как Dз(s) = A(s) + B(s), в то время как
выражение, находящееся в числителе передаточной функции разомкнутой системы
W(, называется характеристическим выражением разомкнутой системы B(s).
2.6.5 Определение параметров передаточной функции объекта по
переходной кривой.
Процесс получения передаточной функции объекта, исходя из данных о
переходном процессе, называется идентификацией объекта.
Предположим, что при подаче на вход некоторого объекта ступенчатого
воздействия была получена переходная характеристика (см. рис. 1.26).
Требуется определить вид и параметры передаточной функции.
Предположим, что передаточная функция имеет
вид
[pic],
(инерционной звено с запаздыванием).
Параметры передаточной функции:
К - коэффициент усиления,
Т - постоянная времени,
( - запаздывание.
Коэффициентом усиления называется величина, показывающая, во сколько раз
данное звено усиливает входной сигнал (в установившемся режиме), и
равна отношению выходной величины у в установившемся режиме ко входной
величине х:
[pic],
Установившееся значение выходной величины ууст - это значение у при t ( (.
Запаздыванием ( называется промежуток времени от момента изменения входной
величины х до начала изменения выходной величины у.
Постоянная времени Т может быть определена несколькими методами в
зависимости от вида передаточной функции. Для рассматриваемой
передаточной функции 1-го порядка Т определяется наиболее просто:
сначала проводится касательная к точке перегиба, затем находятся точки
пересечения с осью времени и асимптотой yуст; время Т определяется как
интервал времени между этими точками.
В случае, если на графике между точкой перегиба имеется вогнутость,
определяется дополнительное запаздывание (доп, которое прибавляется к
основному: ( = ( + (доп.
2.7. Частотные характеристики.
2.7.1 Определение частотных характеристик.
Известно, что динамические процессы могут быть представлены
частотными характеристиками (ЧХ) путем разложения функции в ряд Фурье.
Предположим, имеется некоторый объект и требуется определить его ЧХ.
При экспериментальном снятии ЧХ на вход объекта подается синусоидальный
сигнал с амплитудой Авх = 1 и некоторой частотой (, т.е.
x(t) = Авхsin((t) = sin((t).
Тогда после прохождения переходных процессов
на выходе мы будем также иметь синусоидальный
сигналтой же частоты (, но другой амплитуды
Авых и фазы (:
у(t) = Авыхsin((t + ()
При разных значениях ( величины Авых и (, как правило, также будут
различными. Эта зависимость амплитуды и фазы от частоты называется
частотной характеристикой. Виды ЧХ:
. АФХ - зависимость амплитуды и фазы от частоты
(изображается на комплексной плоскости);
. АЧХ - зависимость амплитуды от частоты;
. ФЧХ - зависимость фазы от частоты;
. ЛАХ, ЛАЧХ - логарифмические АЧХ.
На комплексной плоскости входная величина
x = Авх.sin((t) для каждого момента времени ti
определяется вектором х на комплексной плоскости.
Этот вектор имеет длину, равную Авх, и отложен под
углом (ti к действительной оси. (Re - действительная
ось, Im - мнимая ось)
Тогда величину х можно записать в комплексной форме
х(t) = Авх(cos((t) + j.sin((t)),
где j = [pic]- мнимая единица.
Или, если использовать формулу Эйлера ej( = cos( + j.sin(, то можно
записать
х(t) = Авх.ej(t.
Выходной сигнал y(t) можно аналогично представить как вектор
y(t) = Авых.ej((t+().
Рассмотрим связь передаточной функции и частотной характеристики.
Определим производные по Лапласу:
у ( Y
у’ ( sY
у” ( s2Y и т.д.
Определим производные ЧХ:
у’(t) = j( Авыхеj((t + () = j( у,
у”(t) = (j()2 Авыхеj((t + () = (j()2 у и т.д.
Отсюда видно соответствие s = j(. Вывод: частотные характеристики
могут быть построены по передаточным функциям путем замены s = j(.
Пример: [pic].
При s = j( имеем:
[pic] = [pic] = [pic] = [pic] =
= [pic] - j[pic] = Re(() + j Im(().
Изменяя ( от 0 до (, можно построить АФХ (см. рис.). (
Для построения АЧХ и ФЧХ используются формулы:
[pic], [pic].
Формулы получения АФХ по АЧХ и ФЧХ:
Re(() = A(() cos (((),
Im(() = A(() sin ((().
2.7.2 Логарифмические частотные характеристики.
Логарифмические частотные характеристики (ЛЧХ) используются довольно
часто для описания динамических параметров различных устройств. Существуют
два основных вида ЛЧХ, которые, как правило, используются совместно и
изображаются в виде графиков:
1) ЛАЧХ - логарифмическая АЧХ.
Формула для построения ЛАЧХ: L(() = 20.lg
Aвых(().
Единица измерения - децибел (дБ).
На графике ЛАЧХ по оси абсцисс
откладывается частота в логарифмическом
масштабе. Это означает, что равным величинам
отрезков по оси ( соответствуют кратные
значения частоты. Для ЛЧХ кратность = 10.
По оси ординат откладываются значения L(() в обычном масштабе.
2) ЛФЧХ - логарифмическая ФЧХ. Представляет из себя ФЧХ, у которой ось
частоты ( проградуирована в логарифмическом масштабе в соответствии с ЛАЧХ.
По оси ординат откладываются фазы (.
Примеры ЛЧХ.
1. Фильтр низких частот (ФНЧ)
ЛАЧХ ЛФЧХ Пример цепи
Фильтр низких частот предназначен для подавления высокочастотных
воздействий.
2. Фильтр высоких частот (ФВЧ)
ЛАЧХ ЛФЧХ Пример цепи
Фильтр высоких частот предназначен для подавления низкочастотных
воздействий.
3. Заградительный фильтр.
Заградительный фильтр подавляет только определенный диапазон частот
ЛАЧХ и ЛФЧХ Пример цепи
.
3. Качество процессов управления.
3.1. Критерии устойчивости.
3.1.1 Устойчивость.
Важным показателем АСР является устойчивость, поскольку основное ее
назначение заключается в поддержании заданного постоянного значения
регулируемого параметра или изменение его по определенному закону. При
отклонении регулируемого параметра от заданной величины (например, под
действием возмущения или изменения задания) регулятор воздействует на
систему таким образом, чтобы ликвидировать это отклонение. Если система в
результате этого воздействия возвращается в исходное состояние или
переходит в другое равновесное состояние, то такая система называется
устойчивой. Если же возникают колебания со все возрастающей амплитудой или
происходит монотонное увеличение ошибки е, то система называется
неустойчивой.
Для того, чтобы определить, устойчива система или нет, используются
критерии устойчивости:
1) корневой критерий,
2) критерий Стодолы,
3) критерий Гурвица,
4) критерий Найквиста,
5) критерий Михайлова и др.
Первые два критерия являются необходимыми критериями устойчивости
отдельных звеньев и разомкнутых систем. Критерий Гурвица является
алгебраическим и разработан для определения устойчивости замкнутых систем
без запаздывания. Последние два критерия относятся к группе частотных
критериев, поскольку определяют устойчивость замкнутых систем по их
частотным характеристикам. Их особенностью является возможность применения
к замкнутым системам с запаздыванием, которыми является подавляющее
большинство систем управления.
3.1.2 Корневой критерий.
Корневой критерий определяет устойчивость системы по виду
передаточной функции. Динамической характеристикой системы, описывающей
основные поведенческие свойства, является характеристический полином,
находящийся в знаменателе передаточной функции. Путем приравнивания
знаменателя к нулю можно получить характеристическое уравнение, по корням
которого определить устойчивость.
Корни характеристического уравнения могут быть как действительные,
так и комплексные и для определения устойчивости откладываются на
комплексной плоскости (см. рис. 1.34).
(Символом обозначены корни уравнения).
Виды корней характеристического уравнения:
- Действительные:
положительные (корень № 1);
отрицательные (2);
нулевые (3);
- Комплексные
комплексные сопряженные (4);
чисто мнимые (5);
По кратности корни бывают:
одиночные (1, 2, 3);
сопряженные (4, 5): si = ( ( j(;
кратные (6) si = si+1 = …
Корневой критерий формулируется следующим образом:
Линейная АСР устойчива, если все корни характеристического уравнения
лежат в левой полуплоскости. Если хотя бы один корень находится на мнимой
оси, которая является границей устойчивости, то говорят, что система
находится на границе устойчивости. Если хотя бы один корень находится в
правой полуплоскости (не зависимо от числа корней в левой), то система
является неустойчивой.
Иными словами, все действительные корни и действительные части
комплексных корней должны быть отрицательны. В противном случае система
неустойчива.
Пример 3.1. Передаточная функция системы имеет вид:
[pic].
Характеристическое уравнение: s3 + 2s2 + 2.25s + 1.25 = 0.
Корни: s1 = -1; s2 = -0,5 + j; s3 = -0,5 - j.
Следовательно, система устойчива. (
3.1.3 Критерий Стодолы.
Этот критерий является следствием из предыдущего и формулируется
следующим образом: Линейная система устойчива, если все коэффициенты
характеристического полинома положительны.
То есть, для передаточная из примера 3.1 по критерию Стодола
соответствует устойчивой системе.
3.1.4 Критерий Гурвица.
Критерий Гурвица работает с характеристическим полиномом замкнутой
системы. Как известно, структурная схема АСР по ошибке имеет вид (см. рис.)
Wp - передаточная функция регулятора,
Wy - передаточная функция объекта
управления.
Определим передаточную функцию для
прямой связи (передаточную функцию
разомкнутой системы, см. п. 2.6.4): W( =
Wp Wy.
Далее с учетом наличия отрицательной обратной связи получаем
передаточную функцию замкнутой системы:
[pic].
Как правило, передаточная функция разомкнутой системы имеет дробно-
рациональный вид:
[pic].
Тогда после подстановки и преобразования получаем:
[pic].
Отсюда следует, что характеристический полином замкнутой системы
(ХПЗС) можно определить как сумму числителя и знаменателя W(:
Dз(s) = A(s) + B(s).
Для определения устойчивости по Гурвицу строится матрица таким
образом, чтобы по главной диагонали были расположены коэффициенты ХПЗС с
an+1 по a0. Справа и слева от нее записываются коэффициенты с индексами
через 2 (a0, a2, a4… или a1, a3, a5 …). Тогда для устойчивой системы
необходимо и достаточно, чтобы определитель и все главные диагональные
миноры матрицы были больше нуля.
Если хотя бы один определитель будет равен нулю, то система будет
находится на границе устойчивости.
Если хотя бы один определитель будет отрицателен, то система
неустойчива не зависимо от числа положительных или нулевых определителей.
Пример. Дана передаточная функция разомкнутой системы
[pic].
Требуется определить устойчивость замкнутой системы по критерию
Гурвица.
Для этого определяется ХПЗС:
D(s) = A(s) + B(s) = 2s4 + 3s3 + s2 + 2s3 + 9s2 + 6s + 1 = 2s4 + 5s3 + 10s2
+ 6s + 1.
Поскольку степень ХПЗС равна n = 4, то матрица будет иметь
размер 4х4. Коэффициенты ХПЗС равны а4 = 2, а3 = 5, а2 = 10, а1 = 6, а0 =
1.
Матрица имеет вид:
[pic]
(обратите внимание на сходство строк матрицы: 1 с 3 и 2 с 4). Определители:
?1 = 5 > 0,
[pic],
[pic]
?4 = 1* ?3 = 1*209 > 0.
Поскольку все определители положительны, то АСР устойчива. ?
3.1.5 Критерий Михайлова.
Описанные выше критерии устойчивости не работают, если передаточная
функция системы имеет запаздывание, то есть может быть записана в виде
[pic],
где ( - запаздывание.
В этом случае характеристическое выражение замкнутой системы
полиномом не является и его корни определить невозможно. Для определения
устойчивости в данном случае используются частотные критерии Михайлова и
Найквиста.
Порядок применения критерия Михайлова:
1) Записывается характеристическое выражение замкнутой системы:
Dз(s) = A(s) + B(s).e-(s.
2) Подставляется s = j(: Dз(j() =Re(() + Im(().
3) Записывается уравнение годографа Михайлова Dз(j() и строится кривая на
комплексной плоскости.
Для устойчивой АСР необходимо и достаточно, чтобы
годограф Михайлова (см. рис.), начинаясь при ( = 0
на положительной вещественной полуоси, обходил
последовательно в положительном направлении
(против часовой стрелки) при возрастании ( от 0 до
( n квадрантов, где n - степень
характеристического полинома.
Если годограф Михайлова проходит через начало
координат, то говорят, что система находится на
границе устойчивости.
3.1.6 Критерий Найквиста.
Данный критерий аналогичен критерию Михайлова, но работает с АФХ
системы, поэтому более сложен для расчетов.
Последовательность:
1) Определяется передаточная функция разомкнутой системы [pic].
2) Определяется число правых корней m.
3) Подставляется s = j(: W((j().
4) Строится АФХ разомкнутой системы.
Для устойчивости АСР необходимо и достаточно, чтобы при увеличении (
от 0 до ( АФХ W((j() m раз охватывала точку (-1; 0), где m - число правых
корней разомкнутой системы.
Если АФХ проходит через точку (-1; 0),
то замкнутая система находится на границе
устойчивости.
В случае, если характеристическое уравнение
разомкнутой системы A(s) = 0 корней не имеет
(т.е. m = 0), то критерий, согласно критерию,
замкнутая система является устойчивой, если АФХ
разомкнутой системы W((j() не охватывала точку (-
1; 0), в противном случае система будет
неустойчива (или на границе устойчивости).
3.2. Показатели качества
Если исследуемая АСР устойчива, то может возникнуть вопрос о том,
насколько качественно происходит регулирование в этой системе и
удовлетворяет ли оно технологическим требованиям. На практике качество
регулирования может быть определено визуально по графику переходной кривой,
однако, имеются точные методы, дающие конкретные числовые значения.
Показатели качества разбиты на 4 группы:
1) прямые - определяемые непосредственно по кривой переходного процесса,
2) корневые - определяемые по корням характеристического полинома,
3) частотные - по частотным характеристикам,
4) интегральные - получаемые путем интегрирования функций.
3.2.1 Прямые показатели качества.
К ним относятся: степень затухания (, перерегулирование (,
статическая ошибка ест, время регулирования tp и др.
Предположим, переходная кривая, снятая на объекте, имеет
колебательный вид (см. рис. 1.38).
Сразу по ней определяется установившееся значение выходной величины
ууст.
Степень затухания ( определяется по формуле
[pic],
где А1 и А3 - соответственно 1-я и 3-я амплитуды переходной кривой.
Перерегулирование ( = [pic], где ymax - максимум переходной кривой.
Статическая ошибка ест = х - ууст, где х - входная величина.
Время достижения первого максимума tм определяется по графику.
Время регулирования tp определяется следующим образом: Находится допустимое
отклонение ( = 5% ууст и строится «трубка» толщиной 2(. Время tp
соответствует последней точке пересечения y(t) с данной границей. То
есть время, когда колебания регулируемой величины перестают превышать 5
% от установившегося значения.
3.2.2 Корневые показатели качества.
К ним относятся: степень колебательности m, степень устойчивости ( и
др.
Не требуют построения переходных кривых, поскольку определяются по
корням характеристического полинома. Для этого корни полинома откладываются
на комплексной плоскости и по ним определяются:
Степень устойчивости ( определяется как граница, правее которой корней нет,
т.е.
( = min[pic],
где Re(si) - действительная часть корня si.
Степень колебательности m рассчитывается через угол (: m = tg (. Для
определения ( проводятся два луча, которые ограничивают все корни на
комплексной плоскости. ( - угол между этими лучами и мнимой осью.
Степень колебательности может быть определена также по формуле:
m = min [pic].
3.2.3 Частотные показатели качества.
Для определения частотных показателей качества требуется построение
АФХ разомкнутой системы и АЧХ замкнутой системы.
По АФХ определяются запасы: (( - по амплитуде, (( - по фазе.
Запас (( определяется по точке
пересечения АФХ с отрицательной
действительной полуосью.
Для определения (( строится окружность
единичного радиуса с центром в начале
координат. Запас (( определяется по точке
пересечения с этой окружностью.
По АЧХ замкнутой системы определяются
показатели колебательности по заданию М и
ошибке МЕ как максимумы соответственно АЧХ
по заданию и АЧХ по ошибке.
3.2.4 Связи между показателями качества.
Описанные выше показатели качества связаны между собой определенными
соотношениями:
[pic]; tp = [pic]; [pic]; M = [pic].
4. Настройка регуляторов.
4.1. Типы регуляторов.
Для регулирования объектами управления, как правило, используют
типовые регуляторы, названия которых соответствуют названиям типовых
звеньев:
1) П-регулятор (пропорциональный регулятор)
WП(s) = K1.
Принцип действия заключается в том, что он вырабатывает управляющее
воздействие на объект пропорционально величине ошибки (чем больше ошибка е,
тем больше управляющее воздействие u).
2) И-регулятор (интегрирующий регулятор)
WИ(s) = [pic].
Управляющее воздействие пропорционально интегралу от ошибки.
3) Д-регулятор (дифференцирующий регулятор)
WД(s) = K2 s.
Генерирует управляющее воздействие только при изменении регулируемой
веричины:
u = K2[pic].
На практике данные простейшие регуляторы комбинируются в регуляторы
вида:
4) ПИ-регулятор (пропорционально-интегральный регулятор)
WПИ(s) = K1 + [pic].
5) ПД-регулятор (пропорционально-дифференциальный регулятор)
WПД(s) = K1 + K2 s.
6) ПИД-регулятор.
WПИД(s) = K1 + [pic] + K2 s.
Наиболее часто используется ПИД-регулятор, поскольку он сочетает в
себе достоинства всех трех типовых регуляторов.
4.2. Определение оптимальных настроек регуляторов.
Регулятор, включенный в АСР, может иметь несколько настроек, каждая
из которых может изменяться в достаточно широких пределах. При этом при
определенных значениях настроек система будет управлять объектом в
соответствии с технологическими требованиями, при других может привести к
неустойчивому состоянию.
Поэтому стоит задача определить настройки, соответствующие устойчивой
системе, но и выбрать из них оптимальные.
Оптимальными настройками регулятора называются настройки, которые
соответствуют минимуму (или максимуму) какого-либо показателя качества.
Требования к показателям качества устанавливаются непосредственно, исходя
из технологических. Чаще всего накладываются требования на время
регулирования (минимум) и степень затухания (( ( (зад).
Однако, изменяя настройки таким образом, чтобы увеличить степень
затухания, мы можем прийти к слишком большому времени регулирования, что
нецелесообразно. И наоборот, стремясь уменьшить время регулирования, мы
получаем более колебательные процессы с большим значением (.
Зависимость ( от tp в общем случае имеет вид,
изображенный на графике (см. рис. 1.42).
Поэтому для определения оптимальных настроек
разработан ряд математических методов, среди которых
метод D-разбиения.
Кривой D-разбиения называется кривая в плоскости настроек регулятора,
которая соответствует определенному значению какого-либо показателя
качества.
Например, требуется обеспечить степень затухания ( ( (зад. Имеется
формула, связывающая ( со степенью колебательности m: [pic]. Далее строится
кривая D-разбиения равной степени колебательности m. Последовательность
построения:
1) Определяется ХПЗС Dз(s) с неизвестными настройками.
2) Делается подстановка s = j( - m( и разделение Dз(j( - m() = Re(() +
Im(().
3) Полученное выражение приравнивается к нулю и получается система
Re(() = 0
Im(() = 0
Данная система имеет несколько неизвестных: ( и настройки регулятора.
4) Далее, изменяя ( от 0 до ( эта система решается относительно настроек
регулятора.
5) По полученным данным строится кривая, по которой определяются
оптимальные настройки.
Например, для ПИ-регулятора кривая D-разбиения
может иметь вид представленный на рисунке 1.43.
Оптимальные настройки соответствуют
максимальному значению K0 (для ПИ- и ПИД-
регуляторов) или K1 (для ПД-регулятора).
Часть 2. Средства автоматизации и управления.
1. Измерения технологических параметров.
1.1. Государственная система приборов (ГСП).
ГСП объединяет в себе все средства контроля и регулирования
технологических процессов. Характерной особенностью ГСП является:
1) блочно-модульный принцип, лежащий в основе конструкций устройств;
2) унификация входных-выходных сигналов и сигналов питания.
Содержит три ветви:
1) гидравлическую,
2) пневматическую,
3) электрическую.
Блочно-модульный принцип характеризуется наличием отдельных модулей
или блоков, выполняющих достаточно простую функцию. Этот принцип позволяет
уменьшить номенклатуру средств автоматизации, упрощает ремонт и замену,
уменьшает стоимость, позволяет реализовать принцип взаимозаменяемости.
Унифицированные сигналы:
1) Пневматические - сигналы давления сжатого воздуха
диапазон изменения сигнала: 0,2 - 1 [pic] или 0,02 - 0,1 МПа;
сигнал питания: 1,4 [pic];
расстояние передачи сигнала: до 300 м.
2) Электрические сигналы имеют много диапазонов, которые можно разделить на
две группы:
а) токовые (сигналы постоянного тока), например:
0 - 5 мА, 0 - 20 мА, 4 - 20 мА и др.;
б) сигналы напряжения постоянного тока, например: 0 - 1 В, 0 - 10 В и
др.
Первичные приборы (датчики) могут преобразовывать измеряемый параметр
в какой-либо унифицированный сигнал. Если же датчик выдает
неунифицированный сигнал, то для приведения его к стандартному диапазону
должен быть установлен соответствующий преобразователь.
1.2. Точность преобразования информации.
Прямое измерение – измерение, при котором искомое значение величины находят
непосредственно из опытных данных.
Косвенное измерение - измерение, при котором искомое значение величины
находят на основании зависимости между этой величиной и величинами,
подвергаемыми, прямым измерениям.
Принцип измерений – совокупность физических явлений, на которых основаны
измерения.
Метод измерений – совокупность приемов использования принципов и средств
измерений.
Средство измерений – техническое средство, используемое при измерениях и
имеющее нормированные метрологические свойства.
Мера – средство измерений, предназначенное для воспроизведения физической
величины заданного размера.
Измерительный прибор – средство измерений, предназначенное для выработки
сигнала измерительной информации в форме, доступной для
непосредственного восприятия наблюдателем.
Аналоговый измерительный прибор – измерительный прибор, показания которого
являются непрерывной функцией изменений измеряемой величины.
Цифровой измерительный прибор – измерительный прибор, автоматически
вырабатывающий дискретные сигналы измерительной информации, показания
которого представлены в цифровой форме.
Показывающий измерительный прибор – измерительный прибор, допускающий
только отсчитывание показаний.
Показания средства измерений – измерение величины, определяемое по
отсчетному устройству и выраженное в принятых единицах этой величины.
Градуировочная характеристика средства измерений – зависимость между
значениями величин на выходе и входе средства измерений, составленная в
виде таблицы, графика или формулы.
Диапазон показаний – область значений шкалы, ограниченная конечны и
начальным значениями шкалы.
Диапазон измерений – область значений измеряемой величины, для которой
нормированы допускаемые погрешности средства измерений.
Предел измерений – наибольшее и наименьшее значения диапазона измерений.
Чувствительность измерительного прибора – отношение изменения сигнала на
выходе измерительного прибора к вызывающему его изменению измеряемой
величины.
Любые измерения сопровождаются погрешностями:
1) случайные погрешности - имеют случайную природу и причина их неизвестна;
2) промахи - вызваны неправильными отсчетами по прибору;
3) систематические - обусловлены несовершенством методов определения,
конструкции прибора.
Виды погрешностей:
1) абсолютные: (Х = Х - Х0,
где Х - измеренное значение параметра, Х0 - истинное значение;
Абсолютная погрешность измерения – погрешность измерения, выраженная в
единицах измеряемой величины.
2) относительные: [pic] (выраженные в %-ах);
Относительная погрешность измерения – отношение абсолютной погрешности
измерения к истинному значению измеряемой величины. Относительная
погрешность может быть выражена в процентах.
3) приведенные: [pic],
где Хmin и Хmax - минимальное и максимальное значения измеряемой
величины.
Максимальная приведенная погрешность называется классом точности:
[pic].
В зависимости от класса точности приборы делятся на эталонные
(образцовые) и рабочие.
1.3. Классификация КИП.
На нефтеперерабатывающих и химических производствах наиболее часто
измеряемыми величинами являются температура, давление, расход и уровень. На
них приходится около 80 % всех измерений. Остальную часть занимают
электрические, оптические и др. измерения.
При измерениях используются различные измерительные приборы, которые
классифицируются по ряду признаков. Общей градацией является разделение их
на приборы для измерения: механических, электрических, магнитных, тепловых
и других физических величин.
Классификация по роду измеряемой величины указывает, какую физическую
величину измеряет прибор (давление Р, температуру Т, расход F, уровень L,
количество вещества Q и т.д.).
Исходя из признака преобразования измеряемой величины, измерительные
приборы разделяют на приборы:
а) непосредственной оценки;
б) сравнения.
По характеру измерения: стационарные и переносные.
По способу отсчета измеряемой величины: показывающие, регистрирующие,
суммирующие.
1.4. Виды первичных преобразователей.
Первичные приборы или первичные преобразователи предназначены для
непосредственного преобразования измеряемой величины в другую величину,
удобную для измерения или использования. Различают генераторные,
параметрические и механические преобразователи:
1) Генераторные осуществляют преобразование различных видов энергии в
электрическую, то есть они генерируют электрическую энергию
(термоэлектрические, пьезоэлектрические, электрокинетические,
гальванические и др. датчики).
2) К параметрическим относятся реостатные, тензодатчики, термосопротивления
и т.п. Им для работы необходим источник энергии.
3) Выходным сигналом механических первичных преобразователей (мембранных,
манометров, дифманометров, ротаметров и др.) является усилие, развиваемое
чувствительным элементом под действием измеряемой величины.
1.5. Методы и приборы для измерения температуры.
1.5.1 Классификация термометров.
Температура вещества - величина, характеризующая степень нагретости,
которая определяется внутренней кинетической энергией теплового движения
молекул. Измерение температуры практически возможно только методом
сравнения степени нагретости двух тел.
Для сравнения нагретости этих тел используют изменения каких-либо
физических свойств, зависящих от температуры и легко поддающихся измерению.
По свойству термодинамического тела, используемого для измерения
температуры, можно выделить следующие типы термометров:
. термометры расширения, основанные на свойстве температурного расширения
жидких тел;
. термометры расширения, основанные на свойстве температурного расширения
твердых тел;
. термометры газовые манометрические;
. термометры жидкостные манометрические;
. конденсационные;
. электрические;
. термометры сопротивления;
. оптические монохроматические пирометры;
. оптические цветовые пирометры;
. радиационные пирометры.
1.5.2 Термометры расширения. Жидкостные стеклянные.
Тепловое расширение жидкости характеризуется сравнительным
коэффициентом объемного расширения, значение которого определяется как
[pic], 1/град,
где V0, Vt1, Vt2 - объемы жидкости при 0 (С, температурах t1 и t2
соответственно.
Чувствительность термометра зависит от разности коэффициентов
объемного расширения термометрической жидкости и стекла, от объема
резервуара и диаметра капилляра. Чувствительность термометра обычно лежит в
пределах 0,4…5 мм/(С (для некоторых специальных термометров 100…200 мм/(С).
Для защиты от повреждений технические термометры монтируются в
металлической оправе, а нижняя погружная часть закрывается металлической
гильзой.
1.5.3 Термометры, основанные на расширении твердых тел.
К этой группе приборов относятся дилатометрические и биметаллические
термометры, основанные на изменении линейных размеров твердых тел с
изменением температуры.
1) Конструктивное исполнение дилатометрических термометров основано на
преобразовании измеряемой температуры в разность абсолютных значений
удлинений двух стержней, изготовленных из материалов с существенно
различными термическими коэффициентами линейного расширения:
[pic], 1/град,
где l0, lt1, lt2 - линейные размеры тела при 0 (С, температурах t1 и t2
соответственно.
В силу того, что (( мала, дилатометрические термометры применяются в
качестве различного рода тепловых реле в устройствах сигнализации и
регулирования температуры.
2) Биметаллические термометры основаны на деформации биметаллической ленты
при изменении температуры. Обычно применяются биметаллические ленты,
Страницы: 1, 2, 3, 4, 5
|