Рефераты

Межпредметные связи в курсе школьного предмета химии на предмете углерода и его соединений - (диплом)

p>Параграф 39, страницы 97-100, з. 1-2, стр. 101. Демонстрации: виды стекла, затвердевание цемента при смешении с водой. Лабораторный опыт № 9.

    Приложение 3
    Межпредметный семинар “Биогенные элементы в
    периодической системе Д. И. Менделеева”.

Наиболее эффективным средством обучения является семинар. Межпредметный семинар –одна из эффективных форм организации учебной работы, которая способствует обобщению знаний учащихся из разных предметов. Такой семинар позволит в целом комплексе решать задачи образования, развития и воспитания школьников, то есть ТДЦ.

Межпредметный семинар “Биогенные элементы в ПСХЭ“ – проводится как завершающий и обобщающий тему “ПЗ и ПС Д. И. Менделеева“, “Строение вещества”. Данный семинар проводится с учетом особенностей строения атомов биогенных элементов и их роли в живых организмах и проводится на факультативных занятиях по химии при изучении строения вещества.

Основная цель семинара установить закономерные связи между строением атома, химическими свойствами и биогенными функциями элементов.

За две недели до семинара предлагаем учащимся вопросы для подготовки, называем параграфы из учебников химии и биологии, которые необходимо повторить, рекомендуем дополнительную литературу. Учитель биологии проводит семинары-консультации, на которых рассматриваются более сложные вопросы биологического характера. В процессе совместной работы учителей и коллективной деятельности учащихся, знания по химии и биологии о биогенных элементах приводились в систему.

Учителя-методисты отмечают, что эффективность межпредметных семинаров значительно повышается, если использовать проблемный подход в обучении, коллективную работу в классе и индивидуальный подход к учащимся. Методика семинара в отличии от конференций, в центре которых стоят доклады учащихся, предполагает, прежде всего, совместное обсуждение общей проблемы, темы семинара, а также активность всех учеников в достижении основной учебной цели. Поэтому используются многообразные средства активизации познавательной деятельности учащихся на основе проблемного подхода. Занятия семинара строились таким образом, что учащиеся должны были решить ряд последовательно предложенных проблемных (межпредметных) вопросов: почему именно элемент углерод, а не кремний является основным элементом жизни? Как объяснить, почему с повышением в крови концентрации диоксида углерода повышается и концентрация ионов H+? Какова их физиологическая роль? Почему жизнь зародилась в воде и как это произошло? Каковы физико-химические свойства воды и как объяснить ее биологические функции? Почему живые организмы дышат кислородом, хотя в атмосфере значительно больше азота? Содержание данных вопросов предполагает одновременное использование и обобщение знаний из курсов химии и биологии. В процессе коллективной беседы учащиеся высказывают предположения, ищут их обоснование и приход к решению поставленных проблем.

На межпредметных семинарах нередко заслушиваются доклады учащихся. Тематику докладов целесообразно посвящать вопросам, которые еще не изучались в курсах химии и биологии и требуют самостоятельного освоения учащимися новых разделов учебных программ (например: значение углерода для организма человека); не входят в школьные программы и требуют самостоятельного изучения из дополнительной литературы (например: “Использование элементов-органогенов в медицине”).

Распределение докладов проводилось с учетом познавательных интересов учащихся и их возможностей. В процессе семинара сообщения учащихся прерывались беседой и обобщениями учителя. Доклады служат опорой в постановке и решении проблемных межпредметных вопросов.

Рассмотрим на примере, как происходит на семинаре решение ряда предложенных (межпредметных) проблемных вопросов. Во вводной части семинара в процессе беседы учащиеся повторяют химический состав живых организмов, выводится понятие о биогенных элементах как элементах, из которых строятся органические и неорганические вещества живых организмов, обеспечивающие их основные функции. Рассматриваются и записываются в тетрадь сведения о положении этих элементов в ПС.

Отмечается, что углерод, водород, кислород, азот –это широко распространенные элементы. Они находятся в двух первых периодах таблицы Д. И. Менделеева, имеют небольшой порядковый номер и обладают высокой способностью к образованию устойчивых ковалентных полярных связей в молекулах белков, жиров, углеводов.

Учитель, подчеркивает, что основной скелет органических соединений, входящих в состав живых организмов, образуется из атомов углерода. Перед учащимися ставится проблемный вопрос: почему именно элемент углерод, а не кремний является основным элементом жизни, хотя эти элементы в таблице находятся в одной группе и имеют сходное строение атом?

Учащиеся по заранее подготовленной таблице “Углерод и кремний“ сравнивают строение атомов, химические свойства элементов. Учитель подчеркивает, что углерод имеет строение атома, промежуточное между металлами и неметаллами, поэтому он легко вступает в реакцию со многими элементами, в том числе и с водородом, кислородом, азотом, образуя разнообразные органические вещества. Главной особенностью атомов углерода является их способность к образованию простых элементных связей друг с другом. Это ведет к созданию длинных углеродных цепей (-C-C-C-), прямых, разветвленных, в виде колец, спиралей (демонстрируются таблицы сложных органических веществ), что приводит к огромному многообразию соединений. В большинстве источников– 5-6 млн органических веществ, по сведениям иностранных журналов –12 млн. Вследствие большой металличности, меньшей электроотрицательности кремния по сравнению с углеродом атомы кремния не образуют длинных цепей. Сравнение связей -C-C- и -Si-Si- показывает, что расстояние между атомами углерода значительно меньше, чем между атомами кремния. Это обеспечивает устойчивость углеродных связей и наличие в них большего запаса энергии, что важно для биоэнергетического обмена, для жизнедеятельности организма. Запасы энергии в органических соединениях увеличиваются благодаря способности атомов углерода создавать устойчивые при обычных условиях длинные цепи. Совместно с учащимися делается вывод о необходимости для жизни организмов макромолекул органических веществ с большим числом химических связей, с большим запасом внутренней энергии. Такие макромолекулы образует углерод. Учитель обобщает результаты коллективного обсуждения вопроса: мир углерода– это живая природа, мир кремния – неживая природа. Рассмотрим это на примере фотосинтеза.

Мы утверждаем, что мир углерода –это живая природа. Наиболее яркое и знакомое из курса биологии 6-7 класса учащимся такое явление как фотосинтез. Изобразив схему фотосинтеза, нетрудными вопросами вспоминаем: 1) Из каких веществ образуется сахар в зеленых листьях растений? 2) Какой опыт показывает, что наземные растения на свету поглощают CO2 и выделяют кислород? (рис. 1)

Используя знания физики-9 о втором законе термодинамики повторяем, что любые виды энергии в конечном счете превращаются в тепловую форму и рассеиваются. Реакция же фотосинтеза сопровождается накоплением энергии в органическом веществе за счет преобразования энергии фотонов в энергию химических связей. Энергетический смысл фотосинтеза заключается в расщеплении светом некоторого донора водорода DH2 и переносе водорода на акцептор A с выделением свободного окислителя D: DH2 + A ®свет AH2 + D

В качестве акцептора выступает углекислый газ, а роль донора водорода могут играть некоторые органические соединения, сероводород и вода. Наибольшее распространение получил процесс с участием воды, идущий в зеленых растениях:

    6 CO2 + 6 H2O + 673 ккал хлорофилл® (СH2O)6 + 6 O 2

При этом источником кислорода является вода, а не углекислый газ. В некоторых случаях синтез органического вещества может осуществляться некоторыми бактериями без выделения кислорода. Источником углерода для них служит углекислый газ, а водород берется из сероводорода (или какого-либо органического соединения):

    6 CO2 + 12 H2S ® (CH2O)6 + 12 S + 6 H2O
    Фотосинтез – это сложная многостадийная реакция:

1 стадия – световая –молекулы хлорофилла возбуждаются фотонами света с длиной волны 670-680 нм и ускоряют фотолиз воды, то есть разложение воды на кислород, который поступает в атмосферу, протоны и электроны:

    H2O ® 2 H+ + 2 e- + 1/2 O2

Энергия, образующихся электронов используется в последующих реакциях с участием пигментных фотосистем растений.

2 стадия –темновая, так как протекает без участия солнечного света, во время которой происходит поглощение CO2 и синтез на его основе органических веществ – сахаров, глицерина и аминокислот. Этот процесс, возникнув на Земле, стал мощным геологическим фактором (весь кислород атмосферы имеет фотосинтетическое происхождение).

Ежегодно запасаемое растениями в продуктах фотосинтеза общее количество энергии составляет примерно 1024ккал. Хотя коэффициент полезного действия фотосинтеза невелик (КПД из курса физики).

Известно, что хлорофилл поглощает энергию, находящуюся в голубой (400-500 нм) и красной (610-690 нм) областях спектра.

Поэтому в реальных условиях лишь 10% энергии из видимой области спектра, получаемой растениями, действительно обращается в биомассу. Если сопоставить количество энергии, преобразованной в органические вещества растениями, с большим количеством солнечной энергии, достигающей поверхности Земли, то коэффициент полезного действия фотосинтеза оказывается крайне низким (менее 1%). Только в редких случаях, касающихся культурных растений с высокой продуктивностью, можно повысить КПД до 3% .

Роль образующей глюкозы велика, так как в дальнейшем процессе фотосинтеза образуется крахмал–является запасным питательным материалом для растений и содержится в них в виде крахмальных зерен.

Существенное отличие химии кремния от химии углерода обусловлено прежде всего относительно малой прочностью связей Si-Si. Поэтому цепочки из атомов кремния разрываются гораздо легче , чем углеродные, особенно если имеется возможность образования наиболее характерной для кремния связи с кислородом. Прямым следствием является резкое уменьшение числа устойчивых кремниевых соединений по сравнению с углеродными. Так, различных минералов известно около 3 тыс. , а отдельных видов живых организмов описано более миллиона.

Сравнение диоксида углерода и диоксида кремния показывает активное участие соединений углерода в круговороте веществ в природе, в реакциях обмена веществ в организме (например, газообмен в легких и тканях).

    Обмен газов в легких

Содержание газов во вдыхаемом и выдыхаемом воздухе неодинаково. Во вдыхаемом воздухе содержится почти 21% кислорода, около 79% азота, примерно 0, 035% , небольшое количество водяных паров и инертных газов.

Процентный состав выдыхаемого воздуха иной. Кислорода в ней остается около 16%, количество углекислого газа возрастает до 4%. Увеличивается и содержание водяных паров. Азот и инертные газы в выдыхаемом воздухе остаются в том же количестве, что и во вдыхаемом. Разное содержание кислорода и углекислого газа во вдыхаемом и выдыхаемом воздухе объясняется обменом газов в легочных пузырьках. Концентрация углекислого газа в венозных капиллярах легочных пузырьков гораздо выше, чем в воздухе, заполняющем легочные пузырьки. (рис. 2)

Углекислый газ из венозной крови поступает в легочные пузырьки и во время выдоха выводится из организма. кислород из легочных пузырьков проникает в кровь и вступает в химическое соединение с гемоглобином. Кровь из венозной превращается в артериальную.

По легочным венам артериальная кровь поступает в левое предсердие, затем в левый желудочек и в большой круг кровообращения.

    Обмен газов в тканях

Из капилляров большого круга кровообращения кислород поступает в ткани. (рис. 3). В артериальной крови кислорода больше, чем в клетках, поэтому он легко диффундирует в них и используется в окислительных процессах. Углекислый газ из клеток поступает в кровь. Таким образом, в тканях органов происходит превращение артериальной крови в венозную.

Венозная кровь по венам большого круга кровообращения поступает в правое предсердие, затем в правый желудочек сердца, а оттуда в легкие.

Учитель знакомит учащихся с тем фактором, что при повышении в крови концентрации диоксида углерода повышается и концентрация ионов водорода. Ставиться новый проблемный вопрос: почему с повышением в крови концентрации диоксида углерода повышается и концентрация ионов водорода? Как это объяснить? Учащиеся записывают уравнение реакции:

    CO2 + H2O ® H2CO3 ® H+ + HCO3

Далее повторяется строение атома водорода, особенности его положения в ПС, образование ионов водорода:

    H - 1 e- ® H+; H + 1 e- ® H

Отмечается, что при отдаче электрона от атома водорода остается один “голый протон”, радиус которого почти в 2000 раз меньше радиуса атома водорода. Физиологическое значение положительного иона водорода, рассказывается в докладе ученика, который готовил его, консультируясь с учителем биологии. Аналогично, путем бесед, докладов и самостоятельной работы учащихся с обобщающими таблицами и периодической системой элементов, проходит обсуждение всех других вопросов семинара.

В заключение учащиеся подводят к мировоззренческому выводу о наличии в природе связей “строение– свойства –функции”: биологические (физиологические) функции всех биогенных элементов определяются их физико-химическими свойствами, которые, в свою очередь, зависят от особенностей строения их атомов, их места в ПСХЭ Д. И. Менделеева. В этом проявляется материальное единство живой и неживой природы.

В целях создания межпредметных связей учащимся предлагается дома заполнить таблицу “Знания по биологии, химии, физике, которые привлекались на семинаре”. предмет

    знания (понятия, законы, факты)

Об эффективности межпредметного семинара можно судить по количеству высоких оценок, по росту интереса к познанию взаимосвязей наук химии, биологии. Межпредметный семинар имеет большое воспитательное и образовательное значение.

    Вопросы межпредметного семинара.
    вопросы семинара
    вопросы для подготовки
    литература

1. Углерод – основной элемент жизни. Сравнение элементов углерода и кремния. 1. Понятие об элементах – органогенах.

2. Строение атомов и сравнительная характеристика элементов углерода и кремния. 3. Способность атома углерода к образованию химических связей и углеродных цепей.

Химический состав клетки и ее жизненные свойства. Учебник “Человек”, § 3. Характеристика элемента по его положению в ПТ и строению атома. Учебник “Неорганическая химия”, 8 кл.

    2. Водород, его роль в образовании органических веществ.

1. Особенности строения атома водорода. Отсутствие аналогов. 2. Образование связи водорода с углеродом.

3. Ион водорода и его значение в физиологических процессах. Состояние электронных оболочек атомов. Состояние электронов в атомах. Ионная связь. Ковалентная связь. Учебник “Неорганическая химия”.

    3. Вода. Ее значение в жизни организмов.
    1. Строение молекулы воды.
    2. Физические свойства воды. Вода как растворитель.
    3. Значение воды в жизни организмов.

Вода как растворитель. Растворимость. Значение растворов в природе. Ковалентная связь. Учебник “Неорганическая химия”. 8-9 кл. Водный обмен. Учебник “Человек”, 9 кл.

4. Элементы кислород и азот. Их сходство с углеродом и отличие. Дыхание и фотосинтез. Круговорот углерода в природе.

    1. Строение атомов кислорода и азота. Полярность связи.

2. Строение молекул кислорода и азота. Энергия химических связей. 3. Дыхание и фотосинтез как ox-red процессы.

    4. Обмен веществ и энергии.

Ковалентная связь. ox-red реакции. Учебник “Неорганическая химия”. 9 кл. “Поглощение листьями на свету углекислого газа и выделение кислорода. Поглощение азота из воздуха”. Учебник “Ботаника”, 6-7 кл. Значение дыхания. Газообмен в легких и тканях. Ассимиляция и диссимиляция. Учебник “Человек”.

5. Элементы фосфор, азот, сера. Их участие в образовании органических веществ и в энергетическом обмене.

    1. Многообразие аминокислот и белков.
    2. Значение фосфора, азота и серы для живого организма.

Многообразие белков и их образование в клетках. Учебник “Человек”. 6. Использование элементов – органогенов в медицине.

    1. Физиологический раствор.
    2. Соединения кальция, железа в медицине.
    3. Применение кислорода в медицине.
    Сероводород. Учебник “Неорганическая химия”, 9 кл.
    Популярная медицинская энциклопедия.
    Круговорот углерода

Круговорот углерода (CO2) такой же важный цикл для биосферы, как и круговороты H2O и O2. В круговороте углерода атмосферный фонд очень невелик по сравнению с запасами углерода в океанах, в ископаемом топливе. Полагают, что до наступления индустриальной эры потоки углерода между атмосферой, материками и океаном были сбалансированы, но в последние 100 лет содержание углекислого газа в атмосфере постепенно растет в результате новых антропогенных поступлений. Считают сжигание горючих ископаемых, интенсивное развитие с/х и уничтожение лесов. Перед учащимися может возникнуть проблема: каким образом с/х связано с увеличением содержания углекислого газа в атмосфере, если известно, что зеленые растения в процессе жизнедеятельности фиксируют этот газ?

В ходе обсуждения, привлекая знания из биологии, учащиеся могут прийти к выводу, что фиксация углекислого газа с/х культурами (многие из которых активны лишь часть года) не компенсирует количество углекислого газа, высвобождающего из почвы, особенно при ее частой вспашке.

Вторая причина может возникнуть при обсуждении причин и последствий увеличения углекислого газа в атмосфере в результате сжигания горючих ископаемых, поскольку известно, что фотосинтезирующий “зеленый пояс” Земли и карбонатная система моря поддерживают постоянный уровень содержания углекислого газа в атмосфере (образование углекислого газа компенсируется потреблением его растениями, а также превращением в карбонаты). Каковы же причины и последствия нарушения этого равновесия?

    Можно указать четыре причины:

1. Стремительное возрастание потребления горючих ископаемых. 2. Уменьшение поглотительной способности “зеленого пояса”.

    3. Загрязнение поверхности Мирового океана.
    4. Загрязнение атмосферы.

Что же касается последствий, то это парниковый эффект. Если в атмосфере установится равновесие между углекислым газом, не пропускающим поступающие на Землю лучи, то любое значительное изменение в тепловом балансе повлияет на климат планеты.

В круговорот углерода оба вещества вовлекаются в виде углекислого газа, до которого они окисляются.

    Схема круговорота углерода в главе 2.
    Приложение 4
    Викторина “Знаете ли вы химию и географию? ”

Данный турнир лучше проводить в виде телеигры “Счастливый случай” между параллельными классами для 9х.

    Игра состоит из трех туров:

I тур. Учитель поочередно задает вопросы командам (номер вопроса по вытянутому жетону). На обдумывание вопроса дается 15 секунд. Вопрос, на который не дан ответ, задается болельщикам.

II тур. “Ты – мне, я –тебе”. Каждый из команды задает противнику вопрос. Отвечающий не может советоваться. Время– 15 секунд.

III тур. “Дальше. Дальше. Дальше. ” За 2 минуты команда должна ответить на как можно больше вопросов, то есть конкурс на быстроту, точность. За каждый правильный ответ– 1 очко. Побеждает тот, кто набирает больше очков.

    Вопросы:

1. Какие химические элементы названы в честь частей света? 2. Перечислите элементы, названные в честь стран. 3. Названия каких химических элементов произошли от названий столиц европейских государств? 4. Какой химический элемент назван по имени острова? 5. Название какого элемента произошло от названия полуострова? 6. Какие химические элементы названы в честь: а) города в США, б) штата США. 7. Какой химический элемент получил свое имя по названию города в Древней Греции? 8. Название какой шведской деревушки дало имя четырем химическим элементам? Назовите эти элементы. 9. Какой химический элемент назван в честь провинции в Германии? 10. Верно ли утверждение, что индий назван в честь Индии? 11. Какой элемент второй группы получил свое имя по названию деревни в Шотландии? 12. Почему тулий (? 69) получил такое название? 13. В названия каких химических элементов входят названия рек? 14. Добавьте к названию элемента две буквы в конце слова и назовите реку, берущую свое начало в Монголии и впадающую в Байкал. 15. Заменив одну букву в названии химического элемента, получите название реки во Франции, заменив же другую–название реки, на берегах которой стоит Пенза. 16. Поменяйте окончание “-ий” в названии элемента на “-а”, получите старое название города на Волге. 17. Отбросьте первую букву в названии химического элемента восьмой группы и получите название притока Днестра. 18. Поменяйте букву в названии благородного газа и получите имя реки и города на ней в Чечено-Ингушетии. 19. Замените первую букву в названии химического элемента и получите название пролива между Европой и Азией. 20. Замените первую букву в названии элемента семейства актиноидов и получите название государства в Азии. 21. Замените две буквы в середине названия химического элемента и получите название мыса на юге Сахалина. 22. В названии какого химического элемента содержится название озера в Турции? 23. Назовите химические элементы, которые носят одинаковые названия с городами в СНГ. 24. Какие населенные пункты СНГ имеют названия, связанные с названием химических элементов? 25. Замените последнюю букву в названии элемента на две одинаковые, получите название столицы республики СНГ. 26. Переставьте местами две первые буквы в названии химического элемента, получите город во Франции, расположенном на берегу Сены. 27. Переставьте местами буквы в названии элемента подгруппы железа и получите название города в Куйбышевской области. 28. Прибавьте к названию химического элемента название музыкальной ноты, получите название города во Франции. 29. Замените окончание “-ий” в названии элемента на “а”, получите название города-героя. 30. В названии каких двух химических элементов входит название крупного города в Колумбии? 31. Отбросьте последнюю букву в названии элемента второй группы, получите название итальянского порта на Адриатическом море. 32. Замените последнюю букву в названии элемента и получите название портового города Ростовской области. 33. Название какого острова в Беринговом море связано с названием химического элемента? 34. Отбросив первую букву в названии радиоактивного элемента, получите название острова в Малой Курильской гряде. 35. Добавив к названию элемента шестой группы одну букву, получите название моря и одноименного острова в составе Молуккских островов в Индонезии. 36. Заменив последнюю букву в названии химического элемента, получите название горной системы, являющейся границей между Европой и Азией. 37. Где находятся: а) Золотой Рог, б) Золотые ворота, в) Золотые пески, г) Серебряный берег, д) Железные ворота?

    Ответы:

1. Европий, америций, 2. Германий, франций, полоний (Польша), рутений (Россия), галий (Франция). 3. Гольмий (от старого названия Стокгольма), лютеций (от старого названия Парижа), гафний (старое название Копенгагена). 4. Медь (остров Кипр (Сиргит)), 5. Скандий (Скандинавский п-ов). 6. а) Берклий (Беркли); б) Калифорний (Калифорния). 7. Магний (Магнисия). 8. Иттерби, иттрий, тербий, эрбий, иттербий. 9. Гений (Гейнская провинция). 10. Индий–от синей (индиговой) линии в спектре этого элемента. 11. Стронций (Стронишан). 12. Тулий (от греч. слова “туле”– античные географы называли самую северную часть Земли – северная часть Скандинавского полуострова). 13. Радон – Дон; нильсборий – Нил; индий – Инд; полоний – По. 14. Селен – Селенга. 15. Сера – Сена – Сура. 16. Самарий – Самара. 17. Никель – Икель. 18. Аргон –Аргун. 19. Фосфор – Босфор. 20. Уран – Иран. 21. Криптон – Крилеон. 22. Ванадий –Ван. 23. Никель (Мурманская обл. ), Марганец (Днепропетровская обл. ), Бор (Нижне-Новгородская обл. ) 24. Железноводск (Ставропольский край); Железногорк (Курская обл. ), Железногорск-Илимский (Иркутская обл. ); Железное (Северо-Казахстанская обл. ); Золотаревка (Пензенская обл. ); Золотая гора (Амурская обл. ); Золотники (Тернопольская обл. ); Золотое (Луганская обл. ); Медногорск (Оренбургская обл. ); Медное (Калининская или Тверская обл. ); Сереброполь (Алтайский край); Хромтау (Актюбинская обл. ); Оловянная (Читинская обл. ); Никельтау (Актюбинская обл. ); 25. Таллий– Таллинн; 26. Уран – Руан; 27. Никель – Кинель; 28. Бор – Бордо; 29. Тулий –Тула; 30. Калий, калифорний – кали; 31. Барий – Бари; 32. Азот – Азов; 33. Медный; 34. Кюрий – Юрий; 35. Сера – Серам; 36. Уран –Урал; 37. а) бухта в проливе Босфор, залив Петра Великого у Владивостока; б) пролив, соединяющий Сан-Франциско с Тихим океаном; в) курорт Болгарии на Черном море; г) побережье Бискайского залива во Франции; д) теснина на реке Дунай на границе Югославии и Румынии.

    Приложение 5
    Межпредметная конференция по экологии
    Данная конференция в традиционной форме по плану:
    1. Вступительное слово ведущего.

2. Доклады: “Парниковый эффект”, “Разрушение слоя озона атмосферы”, “Кислотные осадки”, “Фотохимический смог”.

    3. Обсуждение докладов.
    4. Подведение итогов конференции.

Ведущий: Сегодня одни из самых тревожных слов –“экологическая катастрофа”. Ежедневно мы слышим предостережения: “Образумтесь, люди! ”, “Будущее земли в опасности! ”, “На нас–ответственность перед настоящим и будущим! ”. Но все они так и останутся лишь призывами, благими намерениями, если мы не осознаем главного: человечество стоит на пороге экологической катастрофы. Здесь нет преувеличений. Эта тревога так серьезна, что настоящей проблемой по охране окружающей среды занимаются интенсивно не только экологи, но и химики, физики, биологи, метеорологи. Задача сохранения Земли, пригодной для обитания человека и всех других организмов, не может быть решена без сотрудничества всех стран и всех народов Земли, а также без повышения экологической культуры каждого человека.

В последние годы жизни человека угрожают “парниковый эффект”, озоновая “дыра”, кислотные дожди и фотохимический смог. Наша конференция посвящена раскрытию сущности этих явлений.

    1-ый ученик. “Парниковый эффект”.

Некоторые газы, составляющие незначительную долю атмосферы, подобно стеклянной крыше парника хорошо пропускают солнечную радиацию, но задерживают уходящее длинноволновое тепловое излучение Земли. К ним относятся диоксид углерода, метан, оксид азота, хлорфторуглероды. Поскольку в этом отношении они подобны стеклянной крыше парника, их часто называют парниковыми газами. Несмотря на то, что суммарное содержание парниковых газов в атмосфере очень мало, увеличение концентрации хотя бы одного из них приводит к тому, что в атмосфере начинает задерживаться больше тепла, в результате чего повышается средняя температура атмосферы Земли и ее поверхности. Повышение температуры внутренних слоев атмосферы и поверхности Земли, обусловленное накоплением в атмосфере парниковых газов, называется парниковым эффектом. Последние данные показывают, что поступление и накопление в атмосфере диоксида углерода и метана, обусловленное хозяйственной деятельностью человека приводит к потеплению климата Земли. В результате парникового эффекта год за годом на нашей планете становиться теплее, климатические зоны смешиваются, ледники тают, уровень моря увеличивается.

Для замедления начавшегося потепления климата необходимо, прежде всего, остановить избыточное поступление парниковых газов в атмосферу. 2-ой ученик. “Разрушение слоя озона атмосферы. Озоновая “дыра”. ” Стратосферный озон O3образуется, когда молекула кислорода, поглощая коротковолновую радиацию Солнца, распадается на два атома кислорода, каждый из этих атомов соединяется с другой молекулой кислорода, образуя молекулу озона.

Озон легко поглощает ультрафиолет и распадается на первоначальные компоненты O2и O. Освободившийся атом кислорода вновь соединяется с молекулой кислорода и образует молекулу озона. При низменных условиях скорость образования озона равна скорости его распада.

Содержание озона в атмосфере не достигает и одной миллионной доли от содержания остальных газов, однако именно озон поглощает большую часть солнечной ультрафиолетовой радиации, не давая ей достигнуть земной поверхности. Если снижение земной концентрации озона вблизи поверхности Земли оказало бы оздоравливающее влияние на загрязненные местности, то снижение концентрации стратосферного озона опасно, поскольку следующее за этим увеличение интенсивности ультрафиолетового излучения, достигающего поверхности, влечет за собой много неприятных последствий. Оно повышает частоту раковых заболеваний кожи и катаракты, повреждает сельскохозяйственные культуры и разрушает фитопланктон– микроскопические растения, являющиеся начальным звеном пищевой цепи в океане. Главными виновниками снижения концентрации озона в атмосфере являются хлорфторуглероды, в особенности CFCl3 и CF2Cl2. Атомы хлора, входящие в состав хлорфторуглеродов, выбрасываемых в атмосферу, разрушают слой озона.

Озонная “дыра” –это область резко пониженной концентрации озона в стратосфере. Она в более очевидной форме наблюдается над Антарктикой, где в последнее десятилетие весеннее содержание озона снизилось на 50%. В Антарктике и, в какой-то степени, Арктике низкие температуры способствуют ускорению процессов, разрушающих слой озона.

Выводы о состоянии слоя озона в целом по земному шару пока еще делать рано, но уже сейчас можно сказать о том, что за последние 20 лет зимой и ранней весной в средних и высоких широтах Северного полушария потери озона составляют от 3 до 10%, причем большие потери отмечались в высоких широтах.

    3-ий ученик “Кислотные дожди”.

“Кислотные дожди” (к которым относятся также кислотные снега, туман и роса) являются в основном побочным продуктом химической реакции в атмосфере. Их может быть несколько, в которых участвуют оксиды азота и диоксид серы. В ходе различных реакций, таких, как соединения с водой, эти газы могут превращаться соответственно в азотную и серную кислоту, которые хорошо растворимы в воде. Капельки такого раствора, падающие на Землю, и представляют собой “кислотный” дождь.

Источником оксидов серы и азота являются теплоэлектростанции, нефтеперерабатывающие и металлургические заводы, транспорт и т. д. “Кислотные” дожди наносят колоссальный ущерб здоровью людей и материальным средствам. Под их влиянием гибнут озера вместе со своими обитателями, корродирует почва, массивы лесов превращаются в мертвые леса. “Кислотные” дожди разъедают не только легкие человека, но и камни, металлы, краски. 4-ый ученик “Фотохимический смог”.

Неприятным явлением в современных городах и их окрестностях является фотохимический смог. Этим термином обозначают смесь газов, образующуюся в нижних слоях атмосферы, где солнечная радиация воздействует на некоторые газы (особенно на оксиды азота и углеводороды, содержащиеся в выхлопах автомобилей), в результате образуются газы с высокой реакционной способностью, очень вредные для живых организмов.

Главным продуктом таких фотохимических реакций является озон, который в основном и воздействует на глаза и легкие и наносит вред деревьям и сельскохозяйственным культурам. Именно “густоту” смога обычно выражают через концентрацию озона на уровне земной поверхности.

При проведении такой конференции приглашаются работники комитета по охране природы, данные ученики-докладчики являются своего рода “специалистами-экологами”. После выступления задаются вопросы. По ходу конференции ученики заносят в тетрадь краткую характеристику явления и пути предотвращения катастрофы.

Свою работу завершают составлением небольшой схемы о межпредметном взаимодействии.

Задание на дом –подписать влияние над стрелками, т. е. домашнее задание учащихся будет представлено следующей схемой:

    Человек
    Биология
    Ботаника Химия География
    Физика
    Приложение 6
    “Приготовление растворов солей с определенной
    массовой долей w растворенного вещества”

Предлагаем им задачу следующего содержания: “Юные цветоводы попросили юных химиков приготовить каждому из них по 80 г раствора аммиачной селитры сwее в растворе 0, 15. Назовите и рассчитайте действия юных химиков. Раствор с какойwаммиачной селитры получат цветы, если до и после подкормки почву промывают по 100 мл воды. ”

Прежде чем разрешить учащимся приступить к выполнению данной задачи, повторяем с ними основные формулы:

    1. mр-ра = mраст. в-ва + mраст-ля
    2. w = (mраст. в-ва/mр-ра)·100%
    mраст. в-ва = mр-ра·w; mр-ра = mраст. в-ва/w
    Записываем краткое условие задачи.
    Дано:
    m1(р-ра) = 80 г
    w1 = 0, 15
    m2(H2O) = 200 г
    Найти: w2
    Решение.
    1. Рассчитаем массу аммиачной селитры
    mам. с. = 80 г·0, 15 = 12 г

2. Рассчитаем массу воды для растворения 12 г минеральных удобрений mводы = 80 - 12 = 68 г

3. Берут цилиндр, отмеряют 68 мл воды и всыпают 12 г аммиачной селитры. 4. Рассчитывают, каков объем получаемый растениями до, во время и после подкормки и поливки. Отсюда следует, что

    m2(р-ра) = 200 + 80 = 280 г
    5. Рассчитывают w2
    w2 = 12/280 = 0, 04; w = 4%

Ответ: цветы получили раствор аммиачной селитры с w = 0, 04. Можно предложить учащимся составить обратную задачу и решить ее самостоятельно. Приложение 7

    Фрагмент урока по теме “Ионная связь”

Цели: образовательные: дать понятие ионной связи, объяснить механизм образования данной связи, провести сравнение с ковалентной связью;

развивающие: закрепить понятие о ковалентной связи, полярной и неполярной; об электроотрицательности, развитие общеучебных умений анализировать, выделять главное, применять знания из курса географии;

воспитывающие: формировать у учащихся убежденность в познании мира веществ. Фрагмент объяснения механизма образования ионной связи:

    СУМ
    УПДУ
    Рассмотрим механизм образования ионной связи
    +1; -1 - степень окисления
    Na0 + Cl0 ® Na+ Cl

В данном случае общей электронной пары не образуется потому, что электрон от атома Na с внешнего энергетического уровня переходит на внешний энергетический уровень атома Cl, т. к. Cl более электроотрицателен. Спаривание электронов происходит в атоме элемента Cl.

Соединения, которые при этом образуются, называются ионными соединениями. Ионная связь образуется между металлами и галогенами.

    NaCl - хлорид натрия
    Что такое степень окисления?
    Ответ:
    Что такое ион? (из курса физики)
    Запись примера в тетрадь.
    Почему?
    Что такое электроотрицательность?
    Ответ:

Как называется ионное соединение NaCl в быту и где в Арх. обл. находится самое старое месторождение этого полезного ископаемого?

    Ответ: поваренная соль, г. Сольвычегодск.

На доске рисуем схемы взаимодействия щелочных металлов с галогенами. В результате химического взаимодействия атомы галогенов притягивают валентные электроны атомов металлов и образуются ионы. Далее задаем учащимся такие вопросы: Как будут вести себя одноименно или разноименно заряженные ионы, если они окажутся рядом? Какие силы удерживают ионы в ионных соединениях? Заключение урока - обобщение знаний, формулировка полного определения ионной связи. Приложение 8

Тему “Углерод, подгруппа углерода. ”можно завершить зачетным уроком по составлению обобщающей схемы, которая пригодится для сдачи экзамена по химии и приведет в систему знания учащихся, дополняя в старших классах.

    Углерод C, IV группа, главная подгруппа

Значит углерод может обладать и окислительными и восстановительными свойствами. В природе: органические вещества, CO2; CaCO3 – мрамор, мел; MgCO3 – магнезит; FeCO3 – железный шпат. Физические свойства: 4 аллотропные модификации.

    алмаз
    графит
    карбин
    линейный ацетиленовый углерод

sp3-гибридизация, тетраэдрические s-связи, прочные ковалентные, поэтому очень тверд sp2-гибридизация, слоистая структура, большое расстояние и непрочные связи между слоями, поэтому мягкий

    sp-гибридизация, линейный полимер, твердое вещество
    разновидность сажи
    Новая форма линейного углерода

В дополнение к известным формам структуры углерода – палкам, тубам и сферам –группой химиков во главе с Ричардом Дж. Лэгоу из Техасского университета (США) открыта новая аллотропная форма этого элемента–линейный ацетиленовый углерод. Он является разновидностью сажи и представляет собой тончайшие нити в виде паутины янтарного цвета. По этой причине его назвали “волосы ангела”.

Каждая нить новой аллотропной формы углерода содержит от 300 до 500 углеродных атомов, связанных друг с другом чередующимися одинарными и тройными связями. Исследователям удалось осуществить синтез новой формы с помощью лазера путем взрывообразного испарения графитового стержня в заполненном аргоном стеклянном реакторе. Образовавшиеся на стенках реактора нити могут быть легко собраны. Полученные углеродные нити весьма реакционно способны и проводят электрический ток. Химики полагают, что многие из этих нитей закручены в спирали, которые могут превращаться в фуллерены или сажу. Свойства новой аллотропной формы углерода позволяют надеяться на ее применение в микроэлектронике, синтезе алмазов, а также в качестве топлива для реактивных двигателей и топливных элементов.

    Сокр. перев. с англ.
    Г. Т. Хачатуровой
    (Science News, 1995,
    v. 147, ? 5, p. 77)
    Получение углерода
    Сухая перегонка
    древесины каменного угля
    древесный уголь кокс
    активированный уголь
    Самый чистый углерод – сажа
    CH4 ® C + 2H2
    Химические свойства
    - малоактивен, на холоде – только с F2 ® CF4
    Восстановитель ¬ Слабо выражены ® Окислительные
    1) O2 + C ® CO2 ниже 500°C ь
    э загорается
    CO2 + C ® CO выше 900°Cю
    2) H2O + C ® CO + H2 выше 1200°C
    2H2O + C ® CO2 + CO2 + H2 выше 1000°С
    3) CuO + C ® Cu + CO при t
    Cu+2 +2e® Cu0 – окислитель, восстанавливается
    C0 -2e® C+2 – восстановитель, окисляется
    4) HNO3 + 3C ® 3 CO2 + 4 NO + 2 H2O
    с H2SO4 разбавленная
    Cu+2 +2e® Cu0 – окислитель, восстанавливается
    C0 -2e® C+2 – восстановитель, окисляется
    C
    1) Ca + 2C ® Ca ъъъ карбид кальция
    C
    C + Si ® CSi карборунд
    другой способ:
    CaO + C ® CaC2 + CO
    2) 2H2 + C ® C-4H+4
    Рассмотрим с точки зрения ox-red:
    4H0 -4e® 4H+ – восстановитель, окисляется
    C0 +4e® C-4 – окислитель, восстанавливается
    Углерод может быть и окислителем и восстановителем.
    4+
    2+
    n
    Оксид углерода (IV)
    CO2

Страницы: 1, 2, 3, 4, 5, 6


© 2010 Современные рефераты